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Some Likely Exascale Architectures
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New Applications Will Be As Varied and
Demanding

» Wide range of applications today
* More than CFD, Structural Mechanics, Molecular dynamics, QCD
* Include image processing, event-driven simulations, graph analytics

 Rising importance of machine learning and Imitation Intelligence
* The appearance of intelligence without anything behind it
« Still incredibly powerful and useful, but ...

* Not Artificial intelligence
* Intelligence achieved through artificial means
 Training required for each “behavior” (one reason this is Il, not Al)
» Current methods require large amounts of data and compute to train;
ap;plic_ation of the trained system is not (relatively speaking) computationally
intensive

» Workflows involving all of the above

* One example:
» Use Einstein Toolkit to compute gravity waves from cataclysmic events
* This is classic time-dependent PDE solution
+ Use waveforms to train a machine learning system
» Use that system to provide (near) real time detection of gravity waves from aLIGO

» Many workflow-related events at SC
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The Easy Part - Internode communication

« Often focus on the “scale” in Exascale as the hard
part
* How to deal with a million or a billion processes?

* But really not too hard
« Many applications have large regions of regular parallelism

* Or nearly impossible
* If there isn’t enough independent parallelism

» Challenge is in handling definition and operation on
distributed data structures

* Many solutions for the internode programming piece
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Modern MPI

 MPIl is much more than message passing

* | prefer to call MPI a programming system
* Because it implements several programming models

» Major features of MPI include
* Rich message passing, with nonblocking, thread safe, and persistent
versions
* Rich collective communication methods

 Full-featured one-sided operations
» Many new capabilities over MPI-2
* Include remote atomic update
» Portable access to shared memory on nodes
* Process-based alternative to sharing via threads
 (Relatively) precise semantics
« Effective parallel 1/0 that is not restricted by POSIX semantics
» But see implementation issues ...
* Perhaps most important
» Designed to support “programming in the large” - creation of libraries and tools
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There are challenges

* Implementations not always as efficient as they could /
should be

* One sided natification still limited (and under discussion)

A standard moves slowly (and it should)
e But a drawback when architectural innovation is fast

* We need examples that go past MPI
« But they don'’t need to replace MPI
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MPI (The Standard) Can Scale Beyond Exascale

* MP| implementations already supporting more than 1M

processes
» Several systems (including Blue Waters) with over 0.5M independent cores

« Many Exascale designs have a similar number of nodes as
today’s systems
* MPI as the internode programming system seems likely

* There are challenges
« Connection management
« Buffer management
* Memory footprint
 Fast collective operations
* And no implementation is as good as it needs to be, but

* There are no intractable problems here - MPI implementations can
be engineered to support Exascale systems, even in the MPI-
everywhere approach
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Applications Still Mostly MPI-Everywhere

* “the larger jobs (> 4096 nodes) mostly use message
passing with no threading.” - Blue Waters Workload studly,
https://arxiv.org/ftp/arxiv/ipapers/1703/1703.00924 .pdf

 Benefit of programmer-managed locality
* Memory performance nearly stagnant (will HBM save us?)

 Parallelism for performance implies locality must be managed
effectively

 Benefit of a single programming system
 Often stated as desirable but with little evidence

« Common to mix Fortran, C, Python, etc.

 But...Interface between systems must work well, and often don't

* E.g., for MPI+OpenMP, who manages the cores and how is that
negotiated?
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MPI is not a BSP system

« BSP = Bulk Synchronous Programming

« Programmers like the BSP model, adopting it even when not
necessary (see “A Formal Approach to Detect Functionally
Irrelevant Barriers in MPI Programs”)

 Unlike most programming models, designed with a performance
model to encourage quantitative design in programs
* MPI makes it easy to emulate a BSP system
* Rich set of collectives, barriers, blocking operations

* MPI (even MPI-1) sufficient for dynamic adaptive
programming
* The main issues are performance and “progress”

 Improving implementations and better HW support for integrated
CPU/NIC coordination the answer
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MP| On Multicore Nodes

 MPI Everywhere (single core/single thread MPI processes) still
common
« Easy to think about
» We have good performance models (or do we?)

* In reality, there are issues

* Memory per core declining
* Need to avoid large regions for data copies, e.g., halo cells
* MPI implementations could share internal table, data structures
« May only be important for extreme scale systems

* MPI Everywhere implicitly assume uniform communication cost model
 Limits algorithms explored, communication optimizations used
« Even here, there is much to do for
 Algorithm designers
» Application implementers
* MPI implementation developers

* One example: Can we use the single core performance model for
MPI?
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Rates Per MPI| Process
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Why this Behavior?

*The T = s + r n model predicts the same
performance independent of the number of
communicating processes

* What is going on?

 How should we model the time for communication?
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A Slightly Better Model

*For k processes sending messages, the sustained
rate Is
* Min(Ryic-nics K Reoreanic)
* Thus

e[ =s+k n/min(RN|C_N|C, K RCORE-N|C)

*Note if Ryc.nic 1S very large (very fast network), this
reduces to
* T =s+kn/(k Reore-nic) =S + NReorenic

* KNL may need a similar term for s: s+max(0,(k-k;)s;) ,
representing an incremental additional cost once more
than k, concurrently communicating processes
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Comparison on Cray XEG
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More Challenges For Extreme Scale Systems

« Simple MPI everywhere models hide important performance issues
* Impacts algorithms - ex SpMV

* MPI implementations don’t take nodes into account

* Impacts memory overhead, data sharing
» Process topology - Dims_create (for Cart_create) wrong APl - ex nodecart

* File I/O bottlenecks

» Metadata operations impact scaling, even for file/process (or should it be
file per node?)

* Need to monitor performance; avoid imposing too much order on
operations - ex MeshlO
« Communication synchronization
« Common “bogeyman” for extreme scale
» But some of the best algorithms use, e.g., Allreduce
* Reorder operations to reduce communication cost; permit overlap
» Ex scalable CG algorithms and implementations
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Node-Aware Sparse Matrix-Vector Product

» Sparse matrix-vector
products the core to many
algorithms

* E.g., in Krylov methods and in
stencil application

* “Good” mappings of
rocesses to nodes for
ocality also mean that the
same data may be needed

for different processes on
the same node

 Can significantly improve
performance by trading
Intra-node for internode
communication...

* Work of Amand Bienz and
Luke Olson
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MPI Process Topology: The Reality

* MPI provides a rich set of
routines to allow the MPI
Implementation to map
processes to physical
hardware

« But in practice, behaves
poorly or ignored (allowed by
the standard)

* Halo exchange illustrates

» Cart uses MPI_Cart_create

* Nc is a user-implemented version
that taeks noes into account

 Nc is about 2x as fast

* Note both have scaling problems
(the network topology)

Bandwidth/process
N w

Comparison of Process Mappings
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|O Performance Often Terrible

 Applications just assume |/
O is awful and can't be -MM

fixed PlasComCM 4500 4500
* Even simple patterns not MILC 250 156 48
handled well o _
» Example: read or write a * Meshio library built to

submesh of an N-dim mesh match application needs
at an arbitrary offset in file « Replaces many lines in

* Needed to read input mesh app with a single
iIn PlasComCM. Total I/O collective 1/0O call
time less than 10% for long Meshi
science runs (thatis <15 = °* Meshio.
hours) https://github.com/

- But long init phase makes oshkosher/meshio

debugging, developmenthard |, \nj5r of EJ Karrels
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Scalable Preconditioned Conjugate Gradient
Methods

» Reformulations of CG trade computation \oje-3Weak Scaling teration Runtimes
for the ability to overlap communication o

* Hide communication costs and absorb
noise to produce more consistent runtimes

» Must overlap allreduce with more matrix
kernels as work per core decreases and
communication costs increase o gi s T T

Cores

* Faster, more consistent runtimes in noisy o Sttong scting Tet speedups
environments Rl

» Effective for simpler preconditioners and
shows some speedups for more complex
preconditioners without modifications

» Work of Paul Eller, “Scalable Non-blocking

Preconditioned Conjugate Gradient OS2tk aiR o0 Sk ook Aok
hMtte”}ﬁgge’Xslcc:)lg |eee or /document/ Figure: 27-point Poisson matrices with

D. P : : g 4k rows per core (top) and 5123 rows
7877096/ (bottom)
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The hard part - Intranode perfomrnace

 This has always been the hard part

* In 1999, we achieved a 7x (!) improvement in performance for a scalable
CFD code

» This was all in the intranode performance

» “Achieving high sustained performance in an unstructured mesh CFD application”
https://dl.acm.org/citation.cfm?id=331600 , 1999; early analysis of memory limit to
performance, key to GB award

|t is harder now

» Good performance requires effective use of
* Vector and other instructions
 Cache and TLB

« Upcoming systems have
* More complex memory systems
* More and wider vector
* Inter-thread synchronization

* And the community has mostly been in denial about this
« Emphasis on fantasy solutions that provide magic performance

* For example...
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Let The Compiler Do It

* This is the right answer ...
* If only the compiler could do it

*Lets look at one of the simplest operations for a
single core, dense matrix transpose

 Transpose involves only data motion; no floating point
order to respect

* Only a double loop (fewer options to consider)
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A Simple Example: Dense Matrix Transpose

*do j=1,n
do i=1,n
b(i.j) = a(,i)
enddo Perf limit based
enddo - on STREAM
* No temporal locality (data —— N
used once) - T ~——
 Spatial locality only if
(words/cacheline) * n fits in
cache * Performance plummets
when matrices no longer
fit in cache
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Blocking for cache helps

* do jj=1,n,stride]
do ii=1,n,stridei
do j=jj,min(n,jj+stridej-1)
do i=ii,min(n,ii+stridei-1)
b(i.j) = a(,i)
» Good choices of stridei and stridej can improve
performance by a factor of 5 or more

« But what are the choices of stridei and stridej?
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Results: Blue Waters O1
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Results: Blue Waters O3

Simple, unblocked code compiled
with O3 — 709MB/s
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Some Different Approaches to Performance
Portability

« Language based

« Existing languages, possibly with additional information
* Info from pragmas (e.g., align) or compile flags (assume associative)

» Extensions, especially for parallelism
« Directives + runtimes, e.g., OpenMP/OpenCL/OpenACC
« May also relax constraints, e.g., for operation order, bitwise reproducibility

* New languages, especially targeted at
» Specific data structures and operations
» Specific problem domains

* Library based (define mathematical operators and
implement those efficiently)
 Specific data structure/operations (e.g., DGEMM)

 Specific operations with families of data structures (e.g., PETSc)

* This is likely the most practical way to include data-structure and even algorithm
choice

» At the cost of pushing the performance portability problem onto the library
developers
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Some Different Approaches to Performance
Portability

 Tools based
» Recognize that the user can always write poorly-performing code
« Support programming in finding and fixing performance problems

» Example: Early vectorizing compilers gave feedback about missed vectorization
opportunities; trained programmer to write “better” code

* Programmer support and solution components

« Work with programmer to develop code

* Source-to-source tools to transform and to generate code under programmer
guidance

 Autotuning to select from families of code
» Database systems to manage architecture and/or system-specific derivatives

* Magic
» Any sufficiently advanced technology is indistinguishable from magic. (Clarke’s 3rd
law)
« Any sufficiently advanced technology is indistinguishable from a rigged demo.

* Note these approaches are not orthogonal
» Successful performance portability requires many approaches, working together

* For example...
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An Example: Stencil Code from a Real
Application

« Stencil for CFD code A

» Supports 2D and 3D TN o

» Supports different Tk
stencil widths

« Matches computational _ mER ety
scientists’ view of the =1,
mathematics
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Another Version of the Same Code

* This version is 4X
as fast as the £t - 3 ) e
simpler, easier to ool LR T
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lllinois Coding Environment (ICE)

« One pragmatic approach

* Assumptions / coldencory " optmiaton i
. Fast cod_e requires some expert / / \’\\“
intervention
« Can'’t all be done at compile time [ emare j [ frentormaton: ) [Mj (Tm]
» Original code (in standard language)

iS maintained as reference

e Can add information about
computation to code

» Approach

« Annotations provide additional

_ _ descriptive information
Center fOf' Exascale S|mU|at|On Of e Block name, expected |Oop SizeS, etc.

PIasma-Coupqu Qombustlon » Source-to-source transformations
* hitp://xpacc.illinois.edu used to create code for compiler

» Exploit tool ecosystem - interface to
existing tools

 Original “Golden Copy” used for
development, correctness checks
« Database used to manage platform-
specific versions; detect changes that
invalidate transformed versions
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Example: Dense Matrix Multiply

» Matrix Multiplication —

tool: opentuner
time-limit: 30000
variants-limit: 1000

buildoptions:
gcc:
params:{'-0':{"'default': 3, 'min': @, 'max': 3}}

#pragma @ICE loop=matmul
for (1 =0; 1 < n; i++) #Command call for each test
for (j = @; j < n; j++) runcmd: . /mmc
for (k = 0; k < n; k++)
mC[i][J] += mA[i][k] * mB[k][]];
#pragma @ICE endloop

tuning: on

matmul:
rose_uiuc:

- stripmine+:
loop: 3
factor: 2..36

- stripmine+:
loop: 2
factor: 2..48

- interchange+:
order: 1,3,0,2,4

- unroll*:
loop: 5
factor: 2..24

ﬂ




Performance Results

* Dense matrix-matrix
multiply N
302,680 total variants e o3
* Subset evaluated (based
on results-so-far)
* 8.2x speedup over gcc g

0 100 200 300 400 500 600 700

compiler with optimization
« Small but consistent 1007 et
speedup over icc -O3 T
- Different parameters can
be selected/remembered T
for each platform
- Within the constraints of
the performance S
parameters considered B R

Variants Executed
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= Stencil 3D

#pragma @ICE loop=stencil
for(i = 1; i < x-1; i++) {
for(j = 1; J < y-1; j+) {
for(k = 1; k < z-1; k++) {
B[i][j]1[k] = co * A[i]J[j][k] + C1 * (

A[i+1][J][k] + A[i-1][J][k] +
A[i][j+1][k] + A[i][j-1][k] +
A[1][3]0k+1] + A[i][j][k-1]);

}
#pragma @ICE endloop

DOE/NNSA/ASC/PSAAPII:
The Center for Exascale Simulation of
Plasma-coupled Combustion

prebdildémdf |

make realclean; make CC={compiler} COPT={params}
buildoptions:
gecce:
params:{'-0"':{"'default':
icc:
params:{'-0"':{ 'default':

runcmd: ./sten3d 1024 20

tuning: on
stencil:
rose_uiuc:
- stripmine+:
loop: 4
factor: 16..1024
type: poweroftwo
- stripmine+:
loop: 3
factor: 16..1024
type: poweroftwo
- stripmine+:
loop: 2
factor: 16..1024
type: poweroftwo
- interchange+:
order:90,1,3,5,2,4,6

16 |..

3,'min': @, 'max': 3}}

3,'min': O, 'max': 3}}




Performance Results

« 3-D Stencil
* 11,664 variants
 Max 12.6 sec
* Min 3.68 sec
« Speedup over simple

code
e icc: 1.12x
e gcc: 1.21x
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The really hard part - Combining internode and
Intranode programming systems

* Most common approach likely to be MPI + X

 What To Use as X in MPI| + X?

* Threads and Tasks
* OpenMP, pthreads, TBB, OmpSs, StarPU, ...

» Streams (esp for accelerators)
* OpenCL, OpenACC, CUDA, ...

* Alternative distributed memory system
« UPC, CAF, Global Arrays, GASPI/GPI

* MP| shared memory
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X =MPI (or X = )

* MPI 3.1 features esp. important for Exascale

* Generalize collectives to encourage post BSP (Bulk
Synchronous Programming) approach:
* Nonblocking collectives
* Neighbor — including nonblocking — collectives

 Enhanced one-sided

* Precisely specified (see “Remote Memory Access Programming
in MPI-3,” Hoefler et at, in ACM TOPC)

* http://dl.acm.org/citation.cfm?doid=2780584
* Many more operations including RMW

« Enhanced thread safety
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X = Programming with Threads

* Many choices, different user targets and
performance goals
 Libraries: Pthreads, TBB
« Languages: OpenMP 4, C11/C++11

*C11 provides an adequate (and thus complex)
memory model to write portable thread code

* Also needed for MPI-3 shared memory; see “Threads
cannot be implemented as a library”,
http://www.hpl.hp.com/techreports/2004/
HPL-2004-209.html

* Also see “You don’t know Jack about Shared Variables
or Memory Models”, CACM Vol 55#2, Feb 2012
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What are the Issues?

*|sn’t the beauty of MPI + X that MPI and X can be
learned (by users) and implemented (by
developers) independently?

* Yes (sort of) for users
* No for developers

 MPI and X must either partition or share resources
« User must not blindly oversubscribe
* Developers must negotiate
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More Effort needed on the “+”

MPI+X won’t be enough for Exascale if the
work for “+” is not done very well

« Some of this may be language specification:

» User-provided guidance on resource allocation, e.g., MPI_Info
hints; thread-based endpoints, new APls

* Some is developer-level standardization

» A simple example is the MPI ABI specification — users should
ignore but benefit from developers supporting
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Some Resources to Negotiate

* CPU resources * NIC resources
* Threads and contexts * Collective groups
» Cores (incl placement) * Routes
« Cache * Power
* Memory resources * OS resources
- HBM, NVRAM * Synchronization hardware
 Prefetch, outstanding load/ » Scheduling
stores « Virtual memory
* Pinned pages or equivalent « Cores (dark silicon)
NIC needs
* Transactional memory
regions

* Memory use (buffers)
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Two Viewpoints on Programming Systems

 Single Unified System
« Examples
« UPC, Python, Fortran (with CoArrays), Chapel
* Pro
« Can be simpler for user
» Single set of concepts applies to everything
» System has complete control - all productivity and performance optimizations enabled
« Con
« May be limited to problem types (e.g., structured grids)
» Gap between promise and delivery in performance due to complexity

« Composed system
« Examples
* MPI1+OpenMP, Python+C, PETSc + C
* Pro

» Can be simpler for user
» Concepts match each component’s domain

» Implementation simplicity - each piece smaller, more limited domain
« Con

» Hard to impossible to integrate across components

 Limits optimization opportunities
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Summary

» Challenges for Exascale programming are not just in scale
* Need to achieve extreme power and cost efficiencies puts large demands
on the effectiveness of single core (whatever that means) and single node
performance
* MPI remains the most viable internode programming system

» Supports a multiple parallel programming models, including one-sided and
shared memory

» Contains features for “programming in the large” (tools, libraries,
frameworks) that make it particularly appropriate for the internode system

» But some useful features still missing, especially WRT notification, and
implementations don’t realize available performance
* Intranode programming for performance still an unsolved problem

* Lots of possibilities, but adoption remains a problem

« That points to unsolved problems, particularly in integration with large, muiltilingual
codes

« Composition (e.g., MPI+X) is a practical approach
» But requires close attention to “+”
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 Philipp Samfass, Ed Karrels, Amanda Bienz, Paul Eller,
Thiago Teixeira

e Luke Olson, David Padua

* Department of Energy, National Nuclear Security
Administration, under Award Number DE-NA0002374

« ExxonMobile Upstream Research

* Blue Waters Sustained Petascale Project, supported by the
National Science Foundation (award number OCI| 07—
25070) and the state of lllinois.

* Argonne Leadership Computing Facility
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