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Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache
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processors 
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New Applications Will Be As Varied and 
Demanding 
• Wide range of applications today 

•  More than CFD, Structural Mechanics, Molecular dynamics, QCD 
•  Include image processing, event-driven simulations, graph analytics 

•  Rising importance of machine learning and Imitation Intelligence 
•  The appearance of intelligence without anything behind it 
•  Still incredibly powerful and useful, but … 
•  Not Artificial intelligence 

•  Intelligence achieved through artificial means 
•  Training required for each “behavior” (one reason this is II, not AI) 
•  Current methods require large amounts of data and compute to train; 

application of the trained system is not (relatively speaking)  computationally 
intensive 

• Workflows involving all of the above 
•  One example: 

•  Use Einstein Toolkit to compute gravity waves from cataclysmic events 
•  This is classic time-dependent PDE solution 

•  Use waveforms to train a machine learning system 
•  Use that system to provide (near) real time detection of gravity waves from aLIGO 

•  Many workflow-related events at SC 



The Easy Part – Internode communication 

• Often focus on the “scale” in Exascale as the hard 
part 

• How to deal with a million or a billion processes? 
• But really not too hard 

•  Many applications have large regions of regular parallelism 
• Or nearly impossible 

•  If there isn’t enough independent parallelism 
• Challenge is in handling definition and operation on 
distributed data structures 

• Many solutions for the internode programming piece 



Modern MPI 

• MPI is much more than message passing 
•  I prefer to call MPI a programming system 

•  Because it implements several programming models 

• Major features of MPI include 
•  Rich message passing, with nonblocking, thread safe, and persistent 

versions 
•  Rich collective communication methods 
•  Full-featured one-sided operations 

•  Many new capabilities over MPI-2 
•  Include remote atomic update 

•  Portable access to shared memory on nodes 
•  Process-based alternative to sharing via threads 
•  (Relatively) precise semantics 

•  Effective parallel I/O that is not restricted by POSIX semantics 
•  But see implementation issues … 

•  Perhaps most important 
•  Designed to support “programming in the large” – creation of libraries and tools 



There are challenges 

• Implementations not always as efficient as they could / 
should be 

• One sided notification still limited (and under discussion) 
• A standard moves slowly (and it should) 

• But a drawback when architectural innovation is fast 
• We need examples that go past MPI 

•  But they don’t need to replace MPI 



MPI (The Standard) Can Scale Beyond Exascale 

• MPI implementations already supporting more than 1M 
processes 

•  Several systems (including Blue Waters) with over 0.5M independent cores 
• Many Exascale designs have a similar number of nodes as 
today’s systems 

• MPI as the internode programming system seems likely  
• There are challenges 

• Connection management 
• Buffer management 
• Memory footprint 
•  Fast collective operations 
• … 
• And no implementation is as good as it needs to be, but 
•  There are no intractable problems here – MPI implementations can 

be engineered to support Exascale systems, even in the MPI-
everywhere approach 



Applications Still Mostly MPI-Everywhere 

• “the larger jobs (> 4096 nodes) mostly use message 
passing with no threading.” – Blue Waters Workload study, 
https://arxiv.org/ftp/arxiv/papers/1703/1703.00924.pdf 

• Benefit of programmer-managed locality 
• Memory performance nearly stagnant (will HBM save us?) 
• Parallelism for performance implies locality must be managed 

effectively 
• Benefit of a single programming system 

• Often stated as desirable but with little evidence 
• Common to mix Fortran, C, Python, etc. 
• But…Interface between systems must work well, and often don’t 

•  E.g., for MPI+OpenMP, who manages the cores and how is that 
negotiated? 



MPI is not a BSP system 

• BSP = Bulk Synchronous Programming 
• Programmers like the BSP model, adopting it even when not 

necessary (see “A Formal Approach to Detect Functionally 
Irrelevant Barriers in MPI Programs”) 

• Unlike most programming models, designed with a performance 
model to encourage quantitative design in programs 

• MPI makes it easy to emulate a BSP system 
• Rich set of collectives, barriers, blocking operations 

• MPI (even MPI-1) sufficient for dynamic adaptive 
programming 

•  The main issues are performance and “progress” 
•  Improving implementations and better HW support for integrated 

CPU/NIC coordination the answer 



MPI On Multicore Nodes 

• MPI Everywhere (single core/single thread MPI processes) still 
common 

•  Easy to think about 
•  We have good performance models (or do we?) 

•  In reality, there are issues 
•  Memory per core declining 

•  Need to avoid large regions for data copies, e.g., halo cells 
•  MPI implementations could share internal table, data structures 

•  May only be important for extreme scale systems 
•  MPI Everywhere implicitly assume uniform communication cost model 

•  Limits algorithms explored, communication optimizations used 

• Even here, there is much to do for 
•  Algorithm designers 
•  Application implementers 
•  MPI implementation developers 

• One example: Can we use the single core performance model for 
MPI? 



Rates Per MPI Process 

• Ping-pong between 2 
nodes using 1-16 
cores on each node 

• Top is BG/Q, bottom 
Cray XE6 

• “Classic” model 
predicts a single curve 
– rates independent of 
the number of 
communicating 
processes 
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Why this Behavior? 

• The T = s + r n model predicts the same 
performance independent of the number of 
communicating processes 

• What is going on? 
• How should we model the time for communication? 
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A Slightly Better Model 

• For k processes sending messages, the sustained 
rate is 

• min(RNIC-NIC, k RCORE-NIC) 
• Thus 

• T = s + k n/min(RNIC-NIC, k RCORE-NIC) 
• Note if RNIC-NIC is very large (very fast network), this 
reduces to 

• T = s + k n/(k RCORE-NIC) = s + n/RCORE-NIC 

• KNL may need a similar term for s: s+max(0,(k-k0)si) , 
representing an incremental additional cost once more 
than k0 concurrently communicating processes 



Comparison on Cray XE6 

Measured Data Max-Rate Model 
Modeling MPI Communication Performance on SMP Nodes: Is it Time to Retire 
the Ping Pong Test, W Gropp, L Olson, P Samfass, Proceedings of EuroMPI 16, 

https://doi.org/10.1145/2966884.2966919  
 



More Challenges For Extreme Scale Systems 

• Simple MPI everywhere models hide important performance issues 
•  Impacts algorithms – ex SpMV 

• MPI implementations don’t take nodes into account 
•  Impacts memory overhead, data sharing 
•  Process topology – Dims_create (for Cart_create) wrong API – ex nodecart 

• File I/O bottlenecks 
•  Metadata operations impact scaling, even for file/process (or should it be 

file per node?) 
•  Need to monitor performance; avoid imposing too much order on 

operations – ex MeshIO 
• Communication synchronization 

•  Common “bogeyman” for extreme scale 
•  But some of the best algorithms use, e.g., Allreduce 
•  Reorder operations to reduce communication cost; permit overlap 
•  Ex scalable CG algorithms and implementations 



Node-Aware Sparse Matrix-Vector Product 

• Sparse matrix-vector 
products the core to many 
algorithms 

• E.g., in Krylov methods and in 
stencil application 

• “Good” mappings of 
processes to nodes for 
locality also mean that the 
same data may be needed 
for different processes on 
the same node 

• Can significantly improve 
performance by trading 
intra-node for internode 
communication… 

• Work of Amand Bienz and 
Luke Olson 

Reducing Communication Costs in Parallel Algebraic Multigrid (AMG)
Amanda Bienz, Luke Olson (advisor), William D. Gropp (mentor)

University of Illinois at Urbana-Champaign

This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) 
and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant Number DGE-1144245.

• Hypre:	High	performance	preconditioners.	http://www.llnl.gov/CASC/hypre/
• MFEM:	Finite	element	discretization	library.		http://mfem.org
• Florida	Sparse	Matrix	Collection.		http://www.cise.ufl.edu/research/sparse/matrices/

Contact Information
bienz2@illinois.edu

http://web.engr.illinois.edu/~bienz2/

• Performance model: find source of large communication costs 
• All communication is not equal

• Additional penalty per link traversed beyond initial
• Additional penalty for limiting bandwidth to injection limits
• Additional penalty for maximum possible bytes to traverse any 

link (upper bound) and average number of bytes (lower bound)

• In progress: incorporating max-rate model parameters, 
improving network contention measure, and modeling 
queue search time

Performance Models

Altering Parallel Implementation with Topology-Aware Methods

Altering Algorithm through Sparsification

Current & Future Work

• Algebraic multigrid (AMG): sparse linear solver used to solve 
systems resulting from PDEs, lacks parallel scalability

Introduction & Background

Topology-Aware Communication

• Apply topology-aware parallel communication to the sparse 
matrix-vector multiply (SpMV) and sparse matrix-sparse matrix 
multiply (SpGEMM) at each level of multigrid hierarchy for 
MFEM linear elasticity

• Blue Waters partition of 8192 processes
• Reduces number and size of inter-node messages, at cost of 

extra intra-node communication, reducing total cost

TAPSpMV and TAPSpGEMM Results
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coarse levels is created
2. Iterative solve phase: initial 

guess is iteratively improved 
until convergence

• Main Idea: Remove small values from coarse levels
• Based on method of non-Galerkin coarse grids
• Form full hierarchy before removing values from coarse level
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• Modern parallel computers have:

• All processes holding data needed 
by process q, send directly to q

• Large number of nodes
• Many processes per node

• Want to limit inter-
node communication

• Intra-node messages 
still sent directly

• All messages to be sent from node n to node m are first sent 
to process p

• Sent as single message to process q
• Process q redistributes to processes on node m
• Note: assumes many nodes in partition, so all local processes are sending and 

receiving, but only a single message between any two nodes

TAPSpMV Communication
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TAPSpGEMM Communication
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• Message cost varies with size as well 
as locations of send and recv procs

• Can use topology-aware methods to 
improve alpha-beta models for AMG

• Separate alphas and betas for intra-
and inter-node messages

Thick lines: Alpha-Beta model
Thin lines: timings

Alpha-Beta model 
(HPCC) vs. measured

Models with additional 
penalties vs measured

Models with additional 
penalties vs measured when 

sending 1/20th at once

• Improving performance models
• Creating parallel AMG solver, RAPtor, to be released on Github
• Analyzing topology-aware 

communication in AMG

TAPSpMV Strong Scalability  
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ref. SpMV TAPSpMV • Greatly reduces cost of 
communication on coarse 
levels of hierarchy

• Extends scalability 
(performing a SpMV on 
every level of hierarchy)
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Cost of setting and solving each level in a 2D rotated 
anisotropic diffusion hierarchy with Hypre on 8192 cores, 

and 10,000 degrees of freedom per core

• More cost in setting 
up and iterating 
over coarse levels

• Significant increase 
in communication 
requirements on 
coarse levels
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Time, relative to Galerkin AMG, to solve weakly (left) and 
strongly (right) scaled 2D rotated anisotropic diffusion

Adaptively solving the 
hierarchy, adding back 

entries to improve 
convergence as necessary

• Reduces cost over standard Galerkin AMG for both weak and 
strong scale studies

• If incorrect drop tolerance is chosen, entries can be removed or 
reintroduced during solve, allowing for adaptive solve phase



MPI Process Topology: The Reality 

• MPI provides a rich set of 
routines to allow the MPI 
implementation to map 
processes to physical 
hardware 

• But in practice, behaves 
poorly or ignored (allowed by 
the standard) 

• Halo exchange illustrates 
•  Cart uses MPI_Cart_create 
•  Nc is a user-implemented version 

that taeks noes into account 
•  Nc is about 2x as fast 
•  Note both have scaling problems 

(the network topology) 
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IO Performance Often Terrible 

• Applications just assume I/
O is awful and can’t be 
fixed 

• Even simple patterns not 
handled well 

• Example: read or write a 
submesh of an N-dim mesh 
at an arbitrary offset in file 

• Needed to read input mesh 
in PlasComCM.  Total I/O 
time less than 10% for long 
science runs (that is < 15 
hours) 

• But long init phase makes 
debugging, development hard 

•  Meshio library built to 
match application needs 

•  Replaces many lines in 
app with a single 
collective I/O call 

•  Meshio 
https://github.com/
oshkosher/meshio 

•  Work of Ed Karrels 

  
Original Meshio Speedup 

PlasComCM 4500 1 4500 

MILC 750 15.6 48 



Scalable Preconditioned Conjugate Gradient 
Methods  

• Reformulations of CG trade computation 
for the ability to overlap communication  

• Hide communication costs and absorb 
noise to produce more consistent runtimes  

• Must overlap allreduce with more matrix 
kernels as work per core decreases and 
communication costs increase  

• Faster, more consistent runtimes in noisy 
environments  

• Effective for simpler preconditioners and 
shows some speedups for more complex 
preconditioners without modifications  

• Work of Paul Eller, “Scalable Non-blocking 
Preconditioned Conjugate Gradient 
Methods”, SC16 
http://ieeexplore.ieee.org/document/
7877096/  

Scalable Preconditioned Conjugate Gradient Methods

Hide communication costs and
absorb noise to produce more
consistent runtimes

Must overlap allreduce with
more matrix kernels as work per
core decreases and
communication costs increase

Faster, more consistent
runtimes in noisy environments

E↵ective for simpler
preconditioners and shows some
speedups for more complex
preconditioners without
modifications

Figure: 27-point Poisson matrices with

4k rows per core (top) and 512

3

rows

(bottom)



The hard part – Intranode perfomrnace 

• This has always been the hard part 
•  In 1999, we achieved a 7x (!) improvement in performance for a scalable 

CFD code 
•  This was all in the intranode performance 
•  “Achieving high sustained performance in an unstructured mesh CFD application” 

https://dl.acm.org/citation.cfm?id=331600 , 1999; early analysis of memory limit to 
performance, key to GB award 

•  It is harder now 
•  Good performance requires effective use of  

•  Vector and other instructions 
•  Cache and TLB 

• Upcoming systems have 
•  More complex memory systems 
•  More and wider vector 
•  Inter-thread synchronization 

• And the community has mostly been in denial about this 
•  Emphasis on fantasy solutions that provide magic performance 

• For example… 



Let The Compiler Do It 

• This is the right answer … 
• If only the compiler could do it 

• Lets look at one of the simplest operations for a 
single core, dense matrix transpose 

• Transpose involves only data motion; no floating point 
order to respect 

• Only a double loop (fewer options to consider) 



A Simple Example: Dense Matrix Transpose 

• do j=1,n 
    do i=1,n 
        b(i,j) = a(j,i) 
    enddo 
enddo 

• No temporal locality (data 
used once) 

• Spatial locality only if 
(words/cacheline) * n fits in 
cache •  Performance plummets 

when matrices no longer 
fit in cache 

Perf limit based 
on STREAM 



Blocking for cache helps 

• do jj=1,n,stridej     
    do ii=1,n,stridei 
        do j=jj,min(n,jj+stridej-1) 
            do i=ii,min(n,ii+stridei-1) 
                b(i,j) = a(j,i) 

• Good choices of stridei and stridej can improve 
performance by a factor of 5 or more 

• But what are the choices of stridei and stridej? 



Results: Blue Waters O1 
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Results: Blue Waters O3 
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with O3 – 709MB/s 



Some Different Approaches to Performance 
Portability 
• Language based 

• Existing languages, possibly with additional information 
•  Info from pragmas (e.g., align) or compile flags (assume associative) 

• Extensions, especially for parallelism 
•  Directives + runtimes, e.g., OpenMP/OpenCL/OpenACC 
•  May also relax constraints, e.g., for operation order, bitwise reproducibility 

• New languages, especially targeted at 
•  Specific data structures and operations 
•  Specific problem domains 

• Library based (define mathematical operators and 
implement those efficiently) 

• Specific data structure/operations (e.g., DGEMM) 
• Specific operations with families of data structures (e.g., PETSc) 

•  This is likely the most practical way to include data-structure and even algorithm 
choice 

•  At the cost of pushing the performance portability problem onto the library 
developers 



Some Different Approaches to Performance 
Portability 
•  Tools based 

•  Recognize that the user can always write poorly-performing code 
•  Support programming in finding and fixing performance problems 
•  Example: Early vectorizing compilers gave feedback about missed vectorization 

opportunities; trained programmer to write “better” code 
• Programmer support and solution components 

•  Work with programmer to develop code 
•  Source-to-source tools to transform and to generate code under programmer 

guidance  
•  Autotuning to select from families of code 
•  Database systems to manage architecture and/or system-specific derivatives 

• Magic 
•  Any sufficiently advanced technology is indistinguishable from magic. (Clarke’s 3rd 

law) 
•  Any sufficiently advanced technology is indistinguishable from a rigged demo. 

• Note these approaches are not orthogonal 
•  Successful performance portability requires many approaches, working together 

•  For example… 



An Example: Stencil Code from a Real 
Application 

• Stencil for CFD code 
• Supports 2D and 3D 
• Supports different 
stencil widths 

• Matches computational 
scientists’ view of the 
mathematics 



Another Version of the Same Code 

•  This version is 4X 
as fast as the 
simpler, easier to 
read code 

•  Less general code 
(subset to stencil, 
problem 
dimension) 

• Same algorithm, 
data structure, 
and operations, 
but transformed to 
aid compiler in 
generating fast 
(and vectorized) 
code 



Illinois Coding Environment (ICE) 

•  One pragmatic approach 
•  Assumptions 

•  Fast code requires some expert 
intervention 

•  Can’t all be done at compile time 
•  Original code (in standard language) 

is maintained as reference 
•  Can add information about 

computation to code 

•  Center for Exascale Simulation of 
Plasma-Coupled Combustion 

•  http://xpacc.illinois.edu  

• Approach 
•  Annotations provide additional 

descriptive information 
•  Block name, expected loop sizes, etc. 

•  Source-to-source transformations 
used to create code for compiler 

•  Exploit tool ecosystem – interface to 
existing tools 

•  Original “Golden Copy” used for 
development, correctness checks 

•  Database used to manage platform-
specific versions; detect changes that 
invalidate transformed versions 



Example: Dense Matrix Multiply 



Performance Results 

• Dense matrix-matrix 
multiply 

• 302,680 total variants 
• Subset evaluated (based 

on results-so-far) 
• 8.2x speedup over gcc 

compiler with optimization 
• Small but consistent 

speedup over icc –O3 
• Different parameters can 
be selected/remembered 
for each platform 

• Within the constraints of 
the performance 
parameters considered 





Performance Results 

• 3-D Stencil 
• 11,664 variants 
• Max 12.6 sec 
• Min 3.68 sec 
• Speedup over simple 
code 

•  icc: 1.12x 
•  gcc: 1.21x 



The really hard part – Combining internode and 
Intranode programming systems 

• Most common approach likely to be MPI + X 
• What To Use as X in MPI + X? 

• Threads and Tasks 
• OpenMP, pthreads, TBB, OmpSs, StarPU, … 

• Streams (esp for accelerators) 
• OpenCL, OpenACC, CUDA, … 

• Alternative distributed memory system 
• UPC, CAF, Global Arrays, GASPI/GPI 

• MPI shared memory 



X = MPI (or X = ϕ) 

• MPI 3.1 features esp. important for Exascale 
• Generalize collectives to encourage post BSP (Bulk 
Synchronous Programming) approach: 

• Nonblocking collectives 
• Neighbor – including nonblocking – collectives 

• Enhanced one-sided 
• Precisely specified (see “Remote Memory Access Programming 

in MPI-3,” Hoefler et at, in ACM TOPC) 
•  http://dl.acm.org/citation.cfm?doid=2780584  
• Many more operations including RMW 

• Enhanced thread safety 



X = Programming with Threads 

• Many choices, different user targets and 
performance goals 

• Libraries: Pthreads, TBB 
• Languages: OpenMP 4, C11/C++11 

• C11 provides an adequate (and thus complex) 
memory model to write portable thread code 

• Also needed for MPI-3 shared memory; see “Threads 
cannot be implemented as a library”, 
http://www.hpl.hp.com/techreports/2004/
HPL-2004-209.html  

• Also see “You don’t know Jack about Shared Variables 
or Memory Models”, CACM Vol 55#2, Feb 2012 



What are the Issues? 

• Isn’t the beauty of MPI + X that MPI and X can be 
learned (by users) and implemented (by 
developers) independently? 

• Yes (sort of) for users 
• No for developers 

• MPI and X must either partition or share resources 
• User must not blindly oversubscribe 
• Developers must negotiate 



More Effort needed on the “+” 

• MPI+X won’t be enough for Exascale if the 
work for “+” is not done very well 
• Some of this may be language specification: 

• User-provided guidance on resource allocation, e.g., MPI_Info 
hints; thread-based endpoints, new APIs 

• Some is developer-level standardization 
• A simple example is the MPI ABI specification – users should 

ignore but benefit from developers supporting 



Some Resources to Negotiate 

• CPU resources 
•  Threads and contexts 
• Cores (incl placement) 
• Cache 

• Memory resources 
• HBM, NVRAM 
• Prefetch, outstanding load/

stores 
• Pinned pages or equivalent 

NIC needs 
•  Transactional memory 

regions 
• Memory use (buffers) 

• NIC resources 
• Collective groups 
• Routes 
• Power 

• OS resources 
• Synchronization hardware 
• Scheduling 
• Virtual memory 
• Cores (dark silicon) 



Two Viewpoints on Programming Systems  

•  Single Unified System 
•  Examples 

•  UPC, Python, Fortran (with CoArrays), Chapel 
•  Pro 

•  Can be simpler for user 
•  Single set of concepts applies to everything 

•  System has complete control – all productivity and performance optimizations enabled 
•  Con 

•  May be limited to problem types (e.g., structured grids) 
•  Gap between promise and delivery in performance due to complexity 

•  Composed system 
•  Examples 

•  MPI+OpenMP, Python+C, PETSc + C 
•  Pro 

•  Can be simpler for user 
•  Concepts match each component’s domain 

•  Implementation simplicity – each piece smaller, more limited domain 
•  Con 

•  Hard to impossible to integrate across components 
•  Limits optimization opportunities 



Summary 

• Challenges for Exascale programming are not just in scale 
•  Need to achieve extreme power and cost efficiencies puts large demands 

on the effectiveness of single core (whatever that means) and single node 
performance 

• MPI remains the most viable internode programming system 
•  Supports a multiple parallel programming models, including one-sided and 

shared memory 
•  Contains features for “programming in the large” (tools, libraries, 

frameworks) that make it particularly appropriate for the internode system 
•  But some useful features still missing, especially WRT notification, and 

implementations don’t realize available performance 
•  Intranode programming for performance still an unsolved problem 

•  Lots of possibilities, but adoption remains a problem 
•  That points to unsolved problems, particularly in integration with large, multilingual 

codes 

• Composition (e.g., MPI+X) is a practical approach 
•  But requires close attention to “+”  
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