
Challenges in Programming Extreme
Scale Systems

William Gropp
wgropp.cs.illinois.edu

Some Likely Exascale Architectures

2

June 19, 2016 2

Figure 1: Core Group for Node

Figure 2: Basic Layout of a Node Sunway TaihuLight
•  Heterogeneous

processors (MPE,
CPE)

•  No data cache
•  Tianhe2a has

some data cache

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity,
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache

6

From “Abstract Machine
Models and Proxy
Architectures for
Exascale Computing
Rev 1.1,” J Ang et al

Adapteva Epiphany-V
•  1024 RISC

processors
•  32x32 mesh
•  Very high power

efficiency (70GF/W)

New Applications Will Be As Varied and
Demanding
• Wide range of applications today

•  More than CFD, Structural Mechanics, Molecular dynamics, QCD
•  Include image processing, event-driven simulations, graph analytics

•  Rising importance of machine learning and Imitation Intelligence
•  The appearance of intelligence without anything behind it
•  Still incredibly powerful and useful, but …
•  Not Artificial intelligence

•  Intelligence achieved through artificial means
•  Training required for each “behavior” (one reason this is II, not AI)
•  Current methods require large amounts of data and compute to train;

application of the trained system is not (relatively speaking) computationally
intensive

• Workflows involving all of the above
•  One example:

•  Use Einstein Toolkit to compute gravity waves from cataclysmic events
•  This is classic time-dependent PDE solution

•  Use waveforms to train a machine learning system
•  Use that system to provide (near) real time detection of gravity waves from aLIGO

•  Many workflow-related events at SC

The Easy Part – Internode communication

• Often focus on the “scale” in Exascale as the hard
part

• How to deal with a million or a billion processes?
• But really not too hard

•  Many applications have large regions of regular parallelism
• Or nearly impossible

•  If there isn’t enough independent parallelism
• Challenge is in handling definition and operation on
distributed data structures

• Many solutions for the internode programming piece

Modern MPI

• MPI is much more than message passing
•  I prefer to call MPI a programming system

•  Because it implements several programming models

• Major features of MPI include
•  Rich message passing, with nonblocking, thread safe, and persistent

versions
•  Rich collective communication methods
•  Full-featured one-sided operations

•  Many new capabilities over MPI-2
•  Include remote atomic update

•  Portable access to shared memory on nodes
•  Process-based alternative to sharing via threads
•  (Relatively) precise semantics

•  Effective parallel I/O that is not restricted by POSIX semantics
•  But see implementation issues …

•  Perhaps most important
•  Designed to support “programming in the large” – creation of libraries and tools

There are challenges

• Implementations not always as efficient as they could /
should be

• One sided notification still limited (and under discussion)
• A standard moves slowly (and it should)

• But a drawback when architectural innovation is fast
• We need examples that go past MPI

•  But they don’t need to replace MPI

MPI (The Standard) Can Scale Beyond Exascale

• MPI implementations already supporting more than 1M
processes

•  Several systems (including Blue Waters) with over 0.5M independent cores
• Many Exascale designs have a similar number of nodes as
today’s systems

• MPI as the internode programming system seems likely
• There are challenges

• Connection management
• Buffer management
• Memory footprint
•  Fast collective operations
• …
• And no implementation is as good as it needs to be, but
•  There are no intractable problems here – MPI implementations can

be engineered to support Exascale systems, even in the MPI-
everywhere approach

Applications Still Mostly MPI-Everywhere

• “the larger jobs (> 4096 nodes) mostly use message
passing with no threading.” – Blue Waters Workload study,
https://arxiv.org/ftp/arxiv/papers/1703/1703.00924.pdf

• Benefit of programmer-managed locality
• Memory performance nearly stagnant (will HBM save us?)
• Parallelism for performance implies locality must be managed

effectively
• Benefit of a single programming system

• Often stated as desirable but with little evidence
• Common to mix Fortran, C, Python, etc.
• But…Interface between systems must work well, and often don’t

•  E.g., for MPI+OpenMP, who manages the cores and how is that
negotiated?

MPI is not a BSP system

• BSP = Bulk Synchronous Programming
• Programmers like the BSP model, adopting it even when not

necessary (see “A Formal Approach to Detect Functionally
Irrelevant Barriers in MPI Programs”)

• Unlike most programming models, designed with a performance
model to encourage quantitative design in programs

• MPI makes it easy to emulate a BSP system
• Rich set of collectives, barriers, blocking operations

• MPI (even MPI-1) sufficient for dynamic adaptive
programming

•  The main issues are performance and “progress”
•  Improving implementations and better HW support for integrated

CPU/NIC coordination the answer

MPI On Multicore Nodes

• MPI Everywhere (single core/single thread MPI processes) still
common

•  Easy to think about
•  We have good performance models (or do we?)

•  In reality, there are issues
•  Memory per core declining

•  Need to avoid large regions for data copies, e.g., halo cells
•  MPI implementations could share internal table, data structures

•  May only be important for extreme scale systems
•  MPI Everywhere implicitly assume uniform communication cost model

•  Limits algorithms explored, communication optimizations used

• Even here, there is much to do for
•  Algorithm designers
•  Application implementers
•  MPI implementation developers

• One example: Can we use the single core performance model for
MPI?

Rates Per MPI Process

• Ping-pong between 2
nodes using 1-16
cores on each node

• Top is BG/Q, bottom
Cray XE6

• “Classic” model
predicts a single curve
– rates independent of
the number of
communicating
processes

B
an

dw
id

th

B
an

dw
id

th

Why this Behavior?

• The T = s + r n model predicts the same
performance independent of the number of
communicating processes

• What is going on?
• How should we model the time for communication?

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NI
C

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NI
C

A Slightly Better Model

• For k processes sending messages, the sustained
rate is

• min(RNIC-NIC, k RCORE-NIC)
• Thus

• T = s + k n/min(RNIC-NIC, k RCORE-NIC)
• Note if RNIC-NIC is very large (very fast network), this
reduces to

• T = s + k n/(k RCORE-NIC) = s + n/RCORE-NIC

• KNL may need a similar term for s: s+max(0,(k-k0)si) ,
representing an incremental additional cost once more
than k0 concurrently communicating processes

Comparison on Cray XE6

Measured Data Max-Rate Model
Modeling MPI Communication Performance on SMP Nodes: Is it Time to Retire
the Ping Pong Test, W Gropp, L Olson, P Samfass, Proceedings of EuroMPI 16,

https://doi.org/10.1145/2966884.2966919

More Challenges For Extreme Scale Systems

• Simple MPI everywhere models hide important performance issues
•  Impacts algorithms – ex SpMV

• MPI implementations don’t take nodes into account
•  Impacts memory overhead, data sharing
•  Process topology – Dims_create (for Cart_create) wrong API – ex nodecart

• File I/O bottlenecks
•  Metadata operations impact scaling, even for file/process (or should it be

file per node?)
•  Need to monitor performance; avoid imposing too much order on

operations – ex MeshIO
• Communication synchronization

•  Common “bogeyman” for extreme scale
•  But some of the best algorithms use, e.g., Allreduce
•  Reorder operations to reduce communication cost; permit overlap
•  Ex scalable CG algorithms and implementations

Node-Aware Sparse Matrix-Vector Product

• Sparse matrix-vector
products the core to many
algorithms

• E.g., in Krylov methods and in
stencil application

• “Good” mappings of
processes to nodes for
locality also mean that the
same data may be needed
for different processes on
the same node

• Can significantly improve
performance by trading
intra-node for internode
communication…

• Work of Amand Bienz and
Luke Olson

Reducing Communication Costs in Parallel Algebraic Multigrid (AMG)
Amanda Bienz, Luke Olson (advisor), William D. Gropp (mentor)

University of Illinois at Urbana-Champaign

This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993)
and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant Number DGE-1144245.

• Hypre:	High	performance	preconditioners.	http://www.llnl.gov/CASC/hypre/
• MFEM:	Finite	element	discretization	library.		http://mfem.org
• Florida	Sparse	Matrix	Collection.		http://www.cise.ufl.edu/research/sparse/matrices/

Contact Information
bienz2@illinois.edu

http://web.engr.illinois.edu/~bienz2/

• Performance model: find source of large communication costs
• All communication is not equal

• Additional penalty per link traversed beyond initial
• Additional penalty for limiting bandwidth to injection limits
• Additional penalty for maximum possible bytes to traverse any

link (upper bound) and average number of bytes (lower bound)

• In progress: incorporating max-rate model parameters,
improving network contention measure, and modeling
queue search time

Performance Models

Altering Parallel Implementation with Topology-Aware Methods

Altering Algorithm through Sparsification

Current & Future Work

• Algebraic multigrid (AMG): sparse linear solver used to solve
systems resulting from PDEs, lacks parallel scalability

Introduction & Background

Topology-Aware Communication

• Apply topology-aware parallel communication to the sparse
matrix-vector multiply (SpMV) and sparse matrix-sparse matrix
multiply (SpGEMM) at each level of multigrid hierarchy for
MFEM linear elasticity

• Blue Waters partition of 8192 processes
• Reduces number and size of inter-node messages, at cost of

extra intra-node communication, reducing total cost

TAPSpMV and TAPSpGEMM Results

R0r0

R1r1 P1e2

P0e1

e2 = A�1
2 r2

Two Phases:
1. Setup phase: hierarchy of

coarse levels is created
2. Iterative solve phase: initial

guess is iteratively improved
until convergence

• Main Idea: Remove small values from coarse levels
• Based on method of non-Galerkin coarse grids
• Form full hierarchy before removing values from coarse level

A0 P0

A1 P1

A2

A0 P0

A1 P1

A2

Â1

Â2

A0 P0

A1 Â1 P1

A2 Â2

A0 P0

A1 P1

A2

Â1

Â2

Galerkin

Dependencies:

Non-Galerkin Sparse
Galerkin

Hybrid
Galerkin

• Form sparsity pattern:

where is injection
• Remove value if not in

and magnitude less
than times

• Add value to diagonal

P̂
M = PTAP̂ + P̂TAP

M
� magnitude of max off-diagonal in row

Sparsification Process:

n m

q

n m

p

q

n

p

Standard

Topology-Aware

Inter-nodeIntra-node

• Modern parallel computers have:

• All processes holding data needed
by process q, send directly to q

• Large number of nodes
• Many processes per node

• Want to limit inter-
node communication

• Intra-node messages
still sent directly

• All messages to be sent from node n to node m are first sent
to process p

• Sent as single message to process q
• Process q redistributes to processes on node m
• Note: assumes many nodes in partition, so all local processes are sending and

receiving, but only a single message between any two nodes

TAPSpMV Communication

0 5 10 15 20 25
AMG Level

100

101

102

103

104

M
ax

N
um

b
er

of
M

es
sa

ge
s

ref. SpMV TAPSpMV

0 5 10 15 20 25
AMG Level

100

101

102

103

104

M
ax

N
um

b
er

of
M

es
sa

ge
s

ref. SpMV TAPSpMV

0 5 10 15 20 25
AMG Level

10�1

100

101

102

103

104

M
ax

M
es

sa
ge

s
Si

ze
(b

yt
es

)

ref. SpMV TAPSpMV

0 5 10 15 20 25
AMG Level

10�1

100

101

102

103

104

M
ax

M
es

sa
ge

s
Si

ze
(b

yt
es

)

ref. SpMV TAPSpMV

0 5 10 15 20 25
AMG Level

10�5

10�4

10�3

10�2

10�1

T
im

e
(s

ec
on

ds
)

ref. SpMV TAPSpMV

Number intra-node Size intra-node

Size inter-nodeNumber inter-node

0 2 4 6 8 10 12 14 16 18
AMG Level

101

M
ax

im
um

N
um

b
er

of
M

es
sa

ge
s

ref. Matmult TAPMatmult

0 2 4 6 8 10 12 14 16 18
AMG Level

101

102

103

M
ax

im
um

N
um

b
er

of
M

es
sa

ge
s

ref. Matmult TAPMatmult

0 2 4 6 8 10 12 14 16 18
AMG Level

104

105

106

107

M
ax

im
um

Si
ze

of
M

es
sa

ge
s

ref. Matmult TAPMatmult

0 2 4 6 8 10 12 14 16 18
AMG Level

105

106

107

108

M
ax

im
um

Si
ze

of
M

es
sa

ge
s

ref. Matmult TAPMatmult

0 2 4 6 8 10 12 14 16 18
AMG Level

10�3

10�2

10�1

T
im

e
(s

ec
on

ds
)

ref. Matmult TAPMatmult

TAPSpGEMM Communication

Number intra-node Size intra-node

Size inter-nodeNumber inter-node

TAPSpMV Times TAPSpGEMM Times

101 102 103 104 105

Number of Bytes in Message

10�7

10�6

10�5

10�4

10�3

10�2

C
om

m
un

ic
at

io
n

T
im

e
(S

ec
on

ds
)

O↵-Node O↵-Socket On-Socket

• Message cost varies with size as well
as locations of send and recv procs

• Can use topology-aware methods to
improve alpha-beta models for AMG

• Separate alphas and betas for intra-
and inter-node messages

Thick lines: Alpha-Beta model
Thin lines: timings

Alpha-Beta model
(HPCC) vs. measured

Models with additional
penalties vs measured

Models with additional
penalties vs measured when

sending 1/20th at once

• Improving performance models
• Creating parallel AMG solver, RAPtor, to be released on Github
• Analyzing topology-aware

communication in AMG

TAPSpMV Strong Scalability

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Number of Processes

10�1

T
im

e
(s

ec
on

ds
)

ref. SpMV TAPSpMV • Greatly reduces cost of
communication on coarse
levels of hierarchy

• Extends scalability
(performing a SpMV on
every level of hierarchy)

0 1 2 3 4 5 6 7 8 9 10
Level in AMG Hierarchy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
(S

ec
on

ds
)

Setup

Communication

0 1 2 3 4 5 6 7 8 9 10
Level in AMG Hierarchy

0

1

2

3

4

5

6

T
im

e
(S

ec
on

ds
)

Solve

Communication

Cost of setting and solving each level in a 2D rotated
anisotropic diffusion hierarchy with Hypre on 8192 cores,

and 10,000 degrees of freedom per core

• More cost in setting
up and iterating
over coarse levels

• Significant increase
in communication
requirements on
coarse levels

128 1024 4096 8192 16384 32768 100000
Number of Processes

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

T
im

e,
R

el
at

iv
e

to
G

al
er

ki
n

(S
ec

on
ds

)

Galerkin

Non-Galerkin

Sparse Galerkin

Hybrid Galerkin

128 1024 4096 8192 16384 32768 100000
Number of Processes

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
im

e,
R

el
at

iv
e

to
G

al
er

ki
n

(S
ec

on
ds

)

Galerkin

Non-Galerkin

Sparse Galerkin

Hybrid Galerkin

Time, relative to Galerkin AMG, to solve weakly (left) and
strongly (right) scaled 2D rotated anisotropic diffusion

Adaptively solving the
hierarchy, adding back

entries to improve
convergence as necessary

• Reduces cost over standard Galerkin AMG for both weak and
strong scale studies

• If incorrect drop tolerance is chosen, entries can be removed or
reintroduced during solve, allowing for adaptive solve phase

MPI Process Topology: The Reality

• MPI provides a rich set of
routines to allow the MPI
implementation to map
processes to physical
hardware

• But in practice, behaves
poorly or ignored (allowed by
the standard)

• Halo exchange illustrates
•  Cart uses MPI_Cart_create
•  Nc is a user-implemented version

that taeks noes into account
•  Nc is about 2x as fast
•  Note both have scaling problems

(the network topology)

0.00E+00	

1.00E+08	

2.00E+08	

3.00E+08	

4.00E+08	

5.00E+08	

6.00E+08	

7.00E+08	

8.00E+08	

1024	 4096	 16384	 65536	 262144	

Ba
nd

w
id
th
/p
ro
ce
ss
	

Number	of	Processes	

Comparison	of	Process	Mappings	
cart-1k	

cart-4k	

cart-16k	

cart-64k	

nc-1k	

nc-4k	

nc-16k	

nc-64k	

IO Performance Often Terrible

• Applications just assume I/
O is awful and can’t be
fixed

• Even simple patterns not
handled well

• Example: read or write a
submesh of an N-dim mesh
at an arbitrary offset in file

• Needed to read input mesh
in PlasComCM. Total I/O
time less than 10% for long
science runs (that is < 15
hours)

• But long init phase makes
debugging, development hard

•  Meshio library built to
match application needs

•  Replaces many lines in
app with a single
collective I/O call

•  Meshio
https://github.com/
oshkosher/meshio

•  Work of Ed Karrels

Original Meshio Speedup

PlasComCM 4500 1 4500

MILC 750 15.6 48

Scalable Preconditioned Conjugate Gradient
Methods

• Reformulations of CG trade computation
for the ability to overlap communication

• Hide communication costs and absorb
noise to produce more consistent runtimes

• Must overlap allreduce with more matrix
kernels as work per core decreases and
communication costs increase

• Faster, more consistent runtimes in noisy
environments

• Effective for simpler preconditioners and
shows some speedups for more complex
preconditioners without modifications

• Work of Paul Eller, “Scalable Non-blocking
Preconditioned Conjugate Gradient
Methods”, SC16
http://ieeexplore.ieee.org/document/
7877096/

Scalable Preconditioned Conjugate Gradient Methods

Hide communication costs and
absorb noise to produce more
consistent runtimes

Must overlap allreduce with
more matrix kernels as work per
core decreases and
communication costs increase

Faster, more consistent
runtimes in noisy environments

E↵ective for simpler
preconditioners and shows some
speedups for more complex
preconditioners without
modifications

Figure: 27-point Poisson matrices with

4k rows per core (top) and 512

3

rows

(bottom)

The hard part – Intranode perfomrnace

• This has always been the hard part
•  In 1999, we achieved a 7x (!) improvement in performance for a scalable

CFD code
•  This was all in the intranode performance
•  “Achieving high sustained performance in an unstructured mesh CFD application”

https://dl.acm.org/citation.cfm?id=331600 , 1999; early analysis of memory limit to
performance, key to GB award

•  It is harder now
•  Good performance requires effective use of

•  Vector and other instructions
•  Cache and TLB

• Upcoming systems have
•  More complex memory systems
•  More and wider vector
•  Inter-thread synchronization

• And the community has mostly been in denial about this
•  Emphasis on fantasy solutions that provide magic performance

• For example…

Let The Compiler Do It

• This is the right answer …
• If only the compiler could do it

• Lets look at one of the simplest operations for a
single core, dense matrix transpose

• Transpose involves only data motion; no floating point
order to respect

• Only a double loop (fewer options to consider)

A Simple Example: Dense Matrix Transpose

• do j=1,n
 do i=1,n
 b(i,j) = a(j,i)
 enddo
enddo

• No temporal locality (data
used once)

• Spatial locality only if
(words/cacheline) * n fits in
cache •  Performance plummets

when matrices no longer
fit in cache

Perf limit based
on STREAM

Blocking for cache helps

• do jj=1,n,stridej
 do ii=1,n,stridei
 do j=jj,min(n,jj+stridej-1)
 do i=ii,min(n,ii+stridei-1)
 b(i,j) = a(j,i)

• Good choices of stridei and stridej can improve
performance by a factor of 5 or more

• But what are the choices of stridei and stridej?

Results: Blue Waters O1

1 2 3 4 5 6 7 8 9

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9

1600-1800

1400-1600

1200-1400

1000-1200

800-1000

600-800

400-600

200-400

0-200
1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1500-2000

1000-1500

500-1000

0-500

Results: Blue Waters O3

1 2 3 4 5 6 7 8 9

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9

1800-2000

1600-1800

1400-1600

1200-1400

1000-1200

800-1000

600-800

400-600

200-400

0-200 1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1500-2000

1000-1500

500-1000

0-500

Simple, unblocked code compiled
with O3 – 709MB/s

Some Different Approaches to Performance
Portability
• Language based

• Existing languages, possibly with additional information
•  Info from pragmas (e.g., align) or compile flags (assume associative)

• Extensions, especially for parallelism
•  Directives + runtimes, e.g., OpenMP/OpenCL/OpenACC
•  May also relax constraints, e.g., for operation order, bitwise reproducibility

• New languages, especially targeted at
•  Specific data structures and operations
•  Specific problem domains

• Library based (define mathematical operators and
implement those efficiently)

• Specific data structure/operations (e.g., DGEMM)
• Specific operations with families of data structures (e.g., PETSc)

•  This is likely the most practical way to include data-structure and even algorithm
choice

•  At the cost of pushing the performance portability problem onto the library
developers

Some Different Approaches to Performance
Portability
•  Tools based

•  Recognize that the user can always write poorly-performing code
•  Support programming in finding and fixing performance problems
•  Example: Early vectorizing compilers gave feedback about missed vectorization

opportunities; trained programmer to write “better” code
• Programmer support and solution components

•  Work with programmer to develop code
•  Source-to-source tools to transform and to generate code under programmer

guidance
•  Autotuning to select from families of code
•  Database systems to manage architecture and/or system-specific derivatives

• Magic
•  Any sufficiently advanced technology is indistinguishable from magic. (Clarke’s 3rd

law)
•  Any sufficiently advanced technology is indistinguishable from a rigged demo.

• Note these approaches are not orthogonal
•  Successful performance portability requires many approaches, working together

•  For example…

An Example: Stencil Code from a Real
Application

• Stencil for CFD code
• Supports 2D and 3D
• Supports different
stencil widths

• Matches computational
scientists’ view of the
mathematics

Another Version of the Same Code

•  This version is 4X
as fast as the
simpler, easier to
read code

•  Less general code
(subset to stencil,
problem
dimension)

• Same algorithm,
data structure,
and operations,
but transformed to
aid compiler in
generating fast
(and vectorized)
code

Illinois Coding Environment (ICE)

•  One pragmatic approach
•  Assumptions

•  Fast code requires some expert
intervention

•  Can’t all be done at compile time
•  Original code (in standard language)

is maintained as reference
•  Can add information about

computation to code

•  Center for Exascale Simulation of
Plasma-Coupled Combustion

•  http://xpacc.illinois.edu

• Approach
•  Annotations provide additional

descriptive information
•  Block name, expected loop sizes, etc.

•  Source-to-source transformations
used to create code for compiler

•  Exploit tool ecosystem – interface to
existing tools

•  Original “Golden Copy” used for
development, correctness checks

•  Database used to manage platform-
specific versions; detect changes that
invalidate transformed versions

Example: Dense Matrix Multiply

Performance Results

• Dense matrix-matrix
multiply

• 302,680 total variants
• Subset evaluated (based

on results-so-far)
• 8.2x speedup over gcc

compiler with optimization
• Small but consistent

speedup over icc –O3
• Different parameters can
be selected/remembered
for each platform

• Within the constraints of
the performance
parameters considered

Performance Results

• 3-D Stencil
• 11,664 variants
• Max 12.6 sec
• Min 3.68 sec
• Speedup over simple
code

•  icc: 1.12x
•  gcc: 1.21x

The really hard part – Combining internode and
Intranode programming systems

• Most common approach likely to be MPI + X
• What To Use as X in MPI + X?

• Threads and Tasks
• OpenMP, pthreads, TBB, OmpSs, StarPU, …

• Streams (esp for accelerators)
• OpenCL, OpenACC, CUDA, …

• Alternative distributed memory system
• UPC, CAF, Global Arrays, GASPI/GPI

• MPI shared memory

X = MPI (or X = ϕ)

• MPI 3.1 features esp. important for Exascale
• Generalize collectives to encourage post BSP (Bulk
Synchronous Programming) approach:

• Nonblocking collectives
• Neighbor – including nonblocking – collectives

• Enhanced one-sided
• Precisely specified (see “Remote Memory Access Programming

in MPI-3,” Hoefler et at, in ACM TOPC)
•  http://dl.acm.org/citation.cfm?doid=2780584
• Many more operations including RMW

• Enhanced thread safety

X = Programming with Threads

• Many choices, different user targets and
performance goals

• Libraries: Pthreads, TBB
• Languages: OpenMP 4, C11/C++11

• C11 provides an adequate (and thus complex)
memory model to write portable thread code

• Also needed for MPI-3 shared memory; see “Threads
cannot be implemented as a library”,
http://www.hpl.hp.com/techreports/2004/
HPL-2004-209.html

• Also see “You don’t know Jack about Shared Variables
or Memory Models”, CACM Vol 55#2, Feb 2012

What are the Issues?

• Isn’t the beauty of MPI + X that MPI and X can be
learned (by users) and implemented (by
developers) independently?

• Yes (sort of) for users
• No for developers

• MPI and X must either partition or share resources
• User must not blindly oversubscribe
• Developers must negotiate

More Effort needed on the “+”

• MPI+X won’t be enough for Exascale if the
work for “+” is not done very well
• Some of this may be language specification:

• User-provided guidance on resource allocation, e.g., MPI_Info
hints; thread-based endpoints, new APIs

• Some is developer-level standardization
• A simple example is the MPI ABI specification – users should

ignore but benefit from developers supporting

Some Resources to Negotiate

• CPU resources
•  Threads and contexts
• Cores (incl placement)
• Cache

• Memory resources
• HBM, NVRAM
• Prefetch, outstanding load/

stores
• Pinned pages or equivalent

NIC needs
•  Transactional memory

regions
• Memory use (buffers)

• NIC resources
• Collective groups
• Routes
• Power

• OS resources
• Synchronization hardware
• Scheduling
• Virtual memory
• Cores (dark silicon)

Two Viewpoints on Programming Systems

•  Single Unified System
•  Examples

•  UPC, Python, Fortran (with CoArrays), Chapel
•  Pro

•  Can be simpler for user
•  Single set of concepts applies to everything

•  System has complete control – all productivity and performance optimizations enabled
•  Con

•  May be limited to problem types (e.g., structured grids)
•  Gap between promise and delivery in performance due to complexity

•  Composed system
•  Examples

•  MPI+OpenMP, Python+C, PETSc + C
•  Pro

•  Can be simpler for user
•  Concepts match each component’s domain

•  Implementation simplicity – each piece smaller, more limited domain
•  Con

•  Hard to impossible to integrate across components
•  Limits optimization opportunities

Summary

• Challenges for Exascale programming are not just in scale
•  Need to achieve extreme power and cost efficiencies puts large demands

on the effectiveness of single core (whatever that means) and single node
performance

• MPI remains the most viable internode programming system
•  Supports a multiple parallel programming models, including one-sided and

shared memory
•  Contains features for “programming in the large” (tools, libraries,

frameworks) that make it particularly appropriate for the internode system
•  But some useful features still missing, especially WRT notification, and

implementations don’t realize available performance
•  Intranode programming for performance still an unsolved problem

•  Lots of possibilities, but adoption remains a problem
•  That points to unsolved problems, particularly in integration with large, multilingual

codes

• Composition (e.g., MPI+X) is a practical approach
•  But requires close attention to “+”

Thanks!

• Philipp Samfass, Ed Karrels, Amanda Bienz, Paul Eller,
Thiago Teixeira

• Luke Olson, David Padua
• Department of Energy, National Nuclear Security
Administration, under Award Number DE-NA0002374

• ExxonMobile Upstream Research
• Blue Waters Sustained Petascale Project, supported by the
National Science Foundation (award number OCI 07–
25070) and the state of Illinois.

• Argonne Leadership Computing Facility

