
The Grass is Always Greener:
Reflections on the Success of MPI and What

May Come After

William Gropp
wgropp.cs.illinois.edu

Some Context

• Before MPI, there was chaos – many systems, but mostly different
names for similar functions.

•  Even worse – similar but not identical semantics
• Same time(ish) as attack of the killer micros

•  Single core per node for almost all systems
• Era of rapid performance increases due to Dennard scaling

•  Most users could just wait for their codes to get faster on the next
generation hardware

•  MPI benefitted from a stable software environment
•  Node programming changed slowly, mostly due to slow quantitative changes in cache,

instruction sets (e.g., new vector instructions)

• The end of Dennard scaling unleashed architectural innovation
•  And imperatives – more performance requires exploiting

parallelism or specialized architectures
•  (Finally) innovation in memory – at least for bandwidth

Why Was MPI Successful?

• It addresses all of the following issues:
• Portability
• Performance
• Simplicity and Symmetry
• Modularity
• Composability
• Completeness

• For a more complete discussion, see “Learning
from the Success of MPI”,

• https://link.springer.com/chapter/
10.1007/3-540-45307-5_8

Portability and Performance

• Portability does not require a “lowest common denominator” approach
• Good design allows the use of special, performance enhancing

features without requiring hardware support
•  For example, MPI’s nonblocking message-passing semantics

allows but does not require “zero-copy” data transfers
• MPI is really a “Greatest Common Denominator” approach

•  It is a “common denominator” approach; this is portability
•  To fix this, you need to change the hardware (change
“common”)

•  It is a (nearly) greatest approach in that, within the design space
(which includes a library-based approach), changes don’t improve
the approach

•  Least suggests that it will be easy to improve; by definition, any
change would improve it.

• Have a suggestion that meets the requirements? Lets talk!

Simplicity and Symmetry

• MPI is organized around
a small number of
concepts

• The number of routines
is not a good measure of
complexity

• E.g., Fortran
•  Large number of intrinsic

functions
• C/C++, Java, and Python

runtimes are large
• Development Frameworks

•  Hundreds to thousands of
methods

• This doesn’t bother
millions of programmers

• Exceptions are hard on users
• But easy on implementers —

less to implement and test
• Example: MPI_Issend

• MPI provides several send
modes

• Each send can be blocking or
non-blocking

• MPI provides all combinations
(symmetry), including the
“Nonblocking Synchronous
Send”

• Removing this would
slightly simplify
implementations

• Now users need to
remember which routines
are provided, rather than
only the concepts

Modularity and Composability

• Many modern algorithms
are hierarchical

• Do not assume that all
operations involve all or
only one process

• Provide tools that don’t limit
the user

• Modern software is built
from components

• MPI designed to support
libraries

•  “Programming in the large”
• Example: communication

contexts

• Environments are built
from components

• Compilers, libraries,
runtime systems

• MPI designed to “play well
with others”*

• MPI exploits newest
advancements in
compilers

• … without ever talking to
compiler writers

• OpenMP is an example
• MPI (the standard) required

no changes to work with
OpenMP

Completeness

• MPI provides a complete parallel programming
model and avoids simplifications that limit the
model

• Contrast: Models that require that synchronization only
occurs collectively for all processes or tasks

• Make sure that the functionality is there when the
user needs it

• Don’t force the user to start over with a new
programming model when a new feature is needed

I can do “Better”

•  “I don’t need x, and can make MPI faster/smaller/more elegant
without it”

•  Perhaps, for you
•  Who will support you? Is the subset of interest to enough users to form an

ecosystem?
• My hardware has feature x and MPI must make it available to me

•  Go ahead and use your non-portable HW
•  Don’t pretend that adding x to MPI will make codes (performance) portable

• Major fallacy – measurements of performance problems with an
MPI implementation do not prove that MPI (the standard) has a
problem

•  All too common to see papers claiming to compare MPI to x when they do
no such thing

•  Instead, the compare an implementation of MPI to an implementation of x.
•  Why this is bad (beyond being bad science and an indictment of the peer

review system that allows these) – focus on niche, nonviable systems
rather than improving MPI implementations

Maybe you Can do Better

•  There is a gap between the functional definition and the delivered
performance

•  Not just an MPI problem – common in compiler optimization
•  Many (irresponsible) comments that the compiler can optimize better than the programmer
•  A true lie – true for simple codes, but often false once nested loops or more complex code;

often false if vectorization expected
•  “If I actually had a polyhedral optimizer that did what it claimed…” – comment at PPAM17

•  In MPI:
•  Datatypes
•  Process topologies
•  Collectives
•  Asynchronous progress of nonblocking

communication
•  RMA latency
•  Intra-node MPI_Barrier (I did 2x better with naïve code)
•  Parallel I/O performance
•  …

•  Challenge for MPI developers:
•  Which is most important? Optimize for latency (hard) or asymptotic bandwidth?

0.00E+00	

1.00E+08	

2.00E+08	

3.00E+08	

4.00E+08	

5.00E+08	

6.00E+08	

7.00E+08	

8.00E+08	

1024	 4096	 16384	 65536	 262144	

Ba
nd

w
id
th
/p
ro
ce
ss
	

Number	of	Processes	

Comparison	of	Process	Mappings	
cart-1k	

cart-4k	

cart-16k	

cart-64k	

nc-1k	

nc-4k	

nc-16k	

nc-64k	

Why Ease of Use isn’t the Goal
•  Yes, of course I want ease-of-use

•  I want matter transmitters too – it would make my travel much easier
•  Performance is the reason for parallelism

•  Data locality often important for performance
•  MPI forces the user to pay attention to locality

•  That “forces” is often the reason MPI is considered hard to use

•  It is easy to define systems where locality is someone else’s problem
•  “Too hard for the user – so the

 compiler/library/framework will
 do it automatically for the user!”

•  HPC compilers can’t even do this
for dense transpose (!) – why do
you think they can handle harder
problems?

•  Real solution is to work with
the system – don’t expect either
user or system to solve the problem

• Making them useful is an unsolved
problem 1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1500-2000

1000-1500

500-1000

0-500

Simple, unblocked code compiled
with O3 – 709MB/s

But What about the Programming Crisis?

• Use the right tools
• MPI tries to satisfy everyone, but the real strengths are in

•  Attention to performance and scalability
•  Support for libraries and tools

• Many computational scientists use frameworks and libraries built
upon MPI

•  This is the right answer for most people
•  Saying that MPI is the problem is like saying C (or C++) is the problem, and

if we just eliminated MPI (or C or C++) in favor of a high productivity
framework everyone’s problems would be solved

•  In some ways, MPI is too usable – many people can get their work done
with it, which has reduced the market for other tools

•  Particularly when those tools don’t satisfy the 6 features in the success of MPI

The Grass is Always Greener…

• You can either work to improve existing systems like MPI
(or OpenMP or UPC or CAF) or create a new thing that
shows off your new thing

• One challenge to fixing MPI implementations
• Researchers receive more academic credit for creating a new thing

(system y that is “better” than MPI) rather than improving someone
else’s thing (here’s the right algorithm/technique for MPI feature y)

What Might Be Next
•  Intranode considerations

•  SMPs (but with multiple coherence domains); new memory architectures
•  Accelerators, customized processors (custom probably necessary for power efficiency)
•  MPI can be used (MPI+MPI or MPI everywhere), but somewhat tortured

•  No implementation built to support SIMD on SMP, no sharing of data structures or coordinated use
of the interconnect

•  Internode considerations
•  Networks supporting RDMA, remote atomics, even message matching
•  Overheads of ordering
•  Reliability (who is best positioned to recover from an error)

•  MPI is both high and low level (See Marc Snir’s talk today) – can we resolve
this?

•  Challenges and Directions
•  Scaling at fixed (or declining) memory per node

•  How many MPI processes per node is “right”?
•  Realistic fault model that doesn’t guarantee state after a fault
•  Support for complex memory models (MPI_Get_address J)
•  Support for applications requiring strong scaling

•  Implies very low latency interface and …
•  Low latency means paying close attention to the implementation

•  RMA latencies sometimes 10-100x point-to-point (!)
•  MPI performance in MPI_THREAD_MULTIPLE mode
•  Integration with code re-writing and JIT systems as an alternative to a full language

Summary

• MPI was successful because
•  It focused on performance, the reason that most users go parallel
•  It focused on completeness, so that there would be a large enough user

community to support it
•  It focused on clear and precise semantics, so it was clear what the

operations did
•  It was pragmatic about not being a language, despite the benefits
•  It supports backwards compatibility, something no longer a goal for modern

software L
•  It was developed in a truly open process by a diverse group of great people

• MPI should and can be augmented and/or replaced
•  But by something more, not less, capable
•  And as part of an ecosystem that provides both higher and lower level APIs

