MPI The King

* MPI remains the dominant programming model for

MPI: The Once and massively parallel computing in the sciences
Future King » Careful design filled a gap
» Good and ubiquitous implementations provide reliable
performance
William Gropp * Applications developers found it (relatively) easy to use

wgropp.cs.illinois.edu
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Where Is MPI Today?

MPI and MPICH Timeline

MPI forum begins Sunway TaihuLight (China) 10,649,600 (most SIMD; 40,960 nodes)
Scalable Multithreading o Tianhe-2 (China) 3,120,000 (most in Intel Phi)
Trace Files Hybrid Programming MPICH 3.0 .
eIt PO spps Proe gm: 1312;-;!:::“ Sequoia BG/Q (US) 1,572,864
Chame o o™ ganme MTICHE eritcation l Standard Blue Waters (US) 792,064* + 1/6 acc (59,136 GPU stream
v & proc)
90 91 92 93 94 95 96 97 98 99 00 O1 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17
[ s s s s s s Mira BG/Q (US) 786,432
| | K computer (Japan) 705,024
Stampede (US) 462,462 (most in Intel Phi)
Julich BG/Q (Germany) 458,752
Vulcan BG/Q (US) 393,216
Titan (US) 299,008 + acc (261,632 GPU stream proc)
* 2 cores share a wide FP unit
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Blue Waters: NSF’s most powerful system

Largest U.S. system for
open science and
engineering research

* 13 PF peak performance
* 1.5 PB memory

* 1 TB/sec I/0O bandwidth
26 PB disk

» 380+ PB near-line tape
storage capacity

* Support includes experts
for each science team

Science that can’t be done in any other way

*Plasma simulations — W. Mori (UCLA)

*High sustained floating point performance
needed
* 150 million grid points and 300 million particles
* (2 cm)? of plasma

nature

Science that can’t be done in any other way

* Turbulent Stellar Hydrodynamics —
P. Woodward (UMN)
* Sustained 1 PF/s computing for weeks
* Back to back full system jobs.

* Transistor roadmap projections
— G. Klimeck (Purdue)
» Support for CPU/GPU codes.

Science that can’t be done in any other way

» Earthquake response modeling — T. Jordan (USC)
» CyberShake workloads using CPU and GPU -
nodes, sustained, for weeks.
 Seismic hazard maps (NSHMP) and building ws
codes.

» Severe storm modeling — B. Wilhelmson
(llinois)
* First-of-its-kind, 3-D simulation of a
long-track EF5 tornado.




Science that can’'t be done in any other way MPI is not only for Scientific Computing

Collaborative Filtering (Weak scaling, 250 M edges/node)
* Nek5000 — P. Fischer (lllinois)

» Computational fluid dynamics, heat transfer, and combustion.
» Strong scales to over a million MPI ranks.
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Becoming The King Why Was MPI Successful?
* Like Arthur, MPI benefited from the wisdom of *|t addresses all of the following issues:
(more than one) Wizard « Portability
« And like Arthur, there are many lessons for all of * Performance
us in how MPI became King * Simplicity and Symmetry
* Modularity

 Especially for those that aspire to rule... -
» Composability

» Completeness

«For a more complete discussion, see “Learning
from the Success of MPI”,

* https: //link springer.com/chapter/
10.1007/3-540-45307-5_8
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Portability and Performance Simplicity

- Portability does not require a “lowest common denominator” approach ° ; H
» Good design allows the use of special, performance enhancing features MP' 1S Organlzed around a Sma” number Of
without requiring hardware support Concepts
« For example, MPI" s nonblocking message-passing semantics allows but . .
does not require “zero-copy” data transfers * The number of routines is not a good measure
» MPI is really a “Greatest Common Denominator” approach of CompIeX|ty
« It is a “common denominator” approach; this is portability o E.g., Fortran

- To fix this, you need to change the hardware (change “common”)

. ) . - .  Large number of intrinsic functions
* It is a (nearly) greatest approach in that, within the design space (which .
includes a library-based approach), changes don’ t improve the approach + C/C++ and Java runtimes are large

* Least §uggests.that it will be easy to improve; by definition, any change o Development Frameworks
would improve it. » Hundreds to thousands of methods

» Have a suggestion that meets the requirements? Lets talk! . s e
* This doesn’t bother millions of programmers
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Symmetry Modularity

* Exceptions are hard on users «Many modern algorithms are hierarchical

» But easy on implementers — less to implement and test D t that all i . | I |
« Example: MPI_Issend O not assume that all operations invoive all or only one

« MPI provides several send modes: process
* Regular * Provide tools that don’t limit the user
» Synchronous . . .
 Receiver Ready Modern software is built from components
- Buffered * MPI designed to support libraries
» Each send can be blocking or non-blocking * “Programming in the large”
» MPI provides all combinations (sy[nmetry), including the « Example: communication contexts

“Nonblocking Synchronous Send’
* Removing this would slightly simplify implementations

* Now users need to remember which routines are provided,
rather than only the concepts

* Bonus: It turns out that MPI_lssend is useful in building
performance and correctness debugging tools for MPI programs
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Composability Completeness

* Environments are built from components * MPI provides a complete parallel programming
 Compilers, libraries, runtime systems model and avoids simplifications that limit the
« MPI designed to “play well with others”* model

+ MPI exploits newest advancements in compilers * Contrast: Models that require that synchronization only
... without ever talking to compiler writers occurs collectively for all processes or tasks
« OpenMP is an example * Make sure that the functionality is there when the

* MPI (the standard) required no changes to work with OpenMP user needs it

* OpenACC, OpenCL newer examples  Don’ t force the user to start over with a new

MPI-2, -3 did add additional support for threads, and programming model when a new feature is needed

is continuing to consider additional features
» But even MPI-1 designed as thread-safe
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The Pretenders Improving Parallel Programming

*Many have tried to claim the mantel of MPI * How can we make the programming of real applications
ier?

«Why have they failed? easier:

* Problems with the Message-Passing Model
- User’ s responsibility for data decomposition
« “Action at a distance”
*What are the real issues in improving parallel « Matching sends and receives
prog ramming’? * Remote memory access

:  Performance costs of a library (no compile-time optimizations)
?
‘ I'e" what should the Cha”engers try to accomp“Sh :  But there are performance costs to compile-time optimizations as well...

* Need to choose a particular set of calls to match the hardware

* In summary, the lack of abstractions that match the
applications

* They failed to respect one or more of the requirements
for success

INCSA IINCSA



Challenges Challenges

*Must avoid the traps: * An even harder challenge: make it hard to write incorrect
* The challenge is not to make easy programs easier. programs.. . S
The challenge is to make hard programs possible. » OpenMP is not a step in the (entirely) right direction
«We need a “well-posedness” concept for programming * In general, most legacy shared memory programming models are

very dangerous.

tasks » They also perform action at a distance
+ Small changes in the requirements should only require small « They require a kind of user-managed data decomposition to preserve
changes in the code performance without the cost of locks/memory atomic operations
« Rarely a property of “high productivity” languages « Deterministic algorithms should have provably deterministic
- Abstractions that make easy programs easier don’ t solve the implementations
problem « “Data race free” programming, the approach taken in Java and C++, is
. Latency hiding is not the same as low |atency in this direction, and a response to the dangers in ad hoc shared

* Need “Support for aggregate operations on large collections” fmemory programming
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What is Needed To Achieve Real High

Productivity Programming Domain-specific” languages

 Simplify the construction of correct, high-performance applications * (First — think abstract data-structure specific, not science domain)
» Managing Data Decompositions * A possible solution, particularly when mixed with adaptable
« Necessary for both parallel and uniprocessor applications runtimes
« Many levels must be managed * Exploit composition of software (e.g., work with existing compilers,
« Strong dependence on problem domain (e.g., halos, load-balanced don'ttry to dupllcate/rleplace them)
decompositions, dynamic vs. static) * Example: mesh handling
. » Standard rules can define mesh
* Possible approaches « Including “new” meshes, such as C-grids
» Language-based - Alternate mappings easily applied (e.g., Morton orderings)
+ Limited by predefined decompositions (or performance of user- « Careful source-to-source methods can preserve human-readable code
defined) * In the longer term, debuggers could learn to handle programs built with
» Some are more powerful than others; Divacon (1990) provided a IFagrgt]rli‘a:]g}?gomposmon (they already handle 2 languages — assembly and C/

__ builtsin divide and conquer « Provides a single “user abstraction” whose implementation may
° Library-based . o S use the composition of hierarchical models
* Overhead of library (incl. lack of compile-time optimizations), « Also provides a good way to integrate performance engineering into the
tradeoffs between number of routines, performance, and generality application
» Domain-specific languages ...
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Enhancing Existing Languages Let The Compiler Do It

*Embedded DSLs are one way to extend * This is the right answer ...
languages « If only the compiler could do it
* Annotations, coupled with code transformations is *Lets look at one of the simplest operations for a
another single core, dense matrix transpose
* Follows the Beowulf philosophy — exploit commodity * Transpose involves only data motion; no floating point
components to provide new capabilities order to respect
» Approach taken by the Center for Exascale Simulation of * Only a double loop (fewer options to consider)

Plasma-Coupled Combustion xpacc.illinois.edu

« ICE (lllinois Computing Environment) under development as a way to
provide a framework for integrating other performance tools
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Transpose Example Review Blocking for cache helps

* do jj=1,n,stridej
do ii=1,n,stridei

«doj=1,n do j=jj,min(n,jj+stridej-1)
doi=1,n do i=ii,min(n,ji+stridei-1)
b(i.j) = a(j.i) - b(i.j) = a(.i)
enddo » Good choices of stridei and stridej can improve performance by a
enddo factor of 5 or more
+ No temporal locality (data » But what are the choices of stridei and stridej?
used once)

50 1000 1500 2000 2500 3000 3500 4000 4500

* Spatial locality only if
(words/cacheline) * n fits - Performance plummets
in cache when matrices no longer
fitin cache
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Compilers Can’t Do It All The Challenges

« Even for very simple operations, the number of choices * Times are changing; MPI is 25! That’s old for a
that a compiler faces for generating good code can programming system

overwhelm the optimizer

» Guidance by a human expert is required *Can MPI remain _relevant?
» The programming system must not get in the way of the expert * For its core constituency? . o
+ The programming system should make it easy to automate tasks * For new (to MPI) and emerging applications?
under direction of an expert
* Also note that single code performance portability
still not possible
* Just because it is desirable doesn’t make it a reasonable
goal

» Though it is an excellent (if hard) research topic
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Weaknesses of MPI Strengths of MPI
*MPI * MPI
* Distributed Memory. No built-in support for user- * Ubiquity
distributions » Distributed memory provides scalability, reliability,
* Darray and Subarray don’t count bounds complexity (that MPI implementation must
* No built-in support for dynamic execution manage)
* But note dynamic execution easily implemented in MPI * Does not stand in the way of user distributions, dynamic
» Performance cost of interfaces; overhead of calls; rigidity execution
of choice of functionality * Leverages other technologies
+1/O is capable but hard to use * HW, compilers, incl OpenMP/OpenACC
« Vastly better than POSIX, but rarely implemented well, in part * Process-oriented memory model encourages and
because HPC systems make the mistake of insisting on POSIX provides mechanisms for performance
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To Improve on MPI The Future King

: Ad% }Nth_f)t :Sd”('jiSfin?i sttt ; * MPI remains effective as an internode
IStribute aasrucures( a e user nee: S) programmlng System

* This is what most parallel programming “DSL”s really provide
« Low overhead (node)remote operations * Productivity gains come from writing libraries and
» MPI-3 RMA a start, but could be lower overhead if compiled in, handled in frameworks on top of MPI

hard X istent with other data t rt; . . . .
araware, cons'stent with other data transports  This was the original intention of the MPI Forum
» Dynamic load balancing

« MPI-3 shared memory; MPI+X; AMPI all workable solutions but could be *The real challenge will be in intranode
improved .
« Biggest change still needs to be made by applications — must abandon the part of prog rammlng R

the execution model that guarantees predictable performance
» Resource coordination with other programming systems
« See strength — leverage is also a weakness if the parts don’t work well together
» Lower latency implementation

« Essential to productivity — reduces the “grain size” or degree of aggregation that
the programmer must provide

* We need to bring back n,
* Fault tolerance - easy to say, hard to describe precisely
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Likely Exascale Architectures Another Pre-Exascale Architecture
| Main memory I Main memory
(Low Capacity, High Bandwidth) I I I { I } I I I I
_-— e T der H = o Sunway TaihuLight
Low Bandwidth) i i i i i i i i i i ° Heterogeneous
f ‘ o o processors
CICIOICT ) I I (MPE, CPE)
(——= w — +{ s} « Nodata cache
| l
Group Group
o [FEFEFERR | |[oe[FEFEER
itgreted NIC Note: not fully cache EEEN NN
Communication Coherent = ICPlr T T ICPE i
1 cluster —— T~ cluster T
MC TTTTT MC TTTT]
Figure 2.1: Abstract Machine Model of an exascale Node Architecture I SN SNSRI
Main memory I Main memory

* From “Abstract Machine Models and Proxy Architectures |

for Exascale Computing Rev 1.1,” J Ang et al ,
T o | PNCSA




Most Predict Heterogeneous Systems for both What This (might) Mean for MPI
Ops and Memory

* Lots of innovation in the processor and the node

Table 1. Estimated Performance for Leadership-class Systems « More complex memory hierarchy; no chip-wide cache coherence
[ | | | Clock [ | | | [ . Nodes . .
Feature| Derived  Stream | PIMparal- | rate GFLOPS GFLOPS| GFLOPS | Processor | Node  per | Total * Tightly integrated NIC
size | parallelism parallelism lelism GHz FMAs | (Scalar) (Stream) (PIM) pernode | (TFLOP) system| (PFLOPS) ) i

012 2 16 512 0 2 | 2 | 128 | 104 0 2 1 [ 10000 23 » Execution model becoming more complex
2020 12 i 172 0 28 | 4 | 1210 | 4819 | 0 2 6 |20000] 24 + Achieving performance, reliability targets requires exploiting new features
03] 8 122 3873 512 |31 | 4 | 3026 | 12006 | 1,587 4 17 [20000 ] 1330
2030 4 486 15489 | 1024 | 4 | 8 | 31104 | 61,95 | 8192 16 101 [ 20,000 | 32401

Feature size is the size of a logic gate in a semiconductor, in nanometers. Derived parallelism is the amount of concurrency, given processor cores with a
constant number of components, on a semiconductor chip of fixed size. Stream and PIM parallelism are the number of specialized processor cores for
stream and processor-in-memory processing, respectively. FMA is the number of floating-point multiply-add units available to each processor core. From
these values, the performance in GigaFLOPS is computed for each processor and node, as well as the total peak performance of a leadership-scale system.

Another estimate, from “CFD Vision 2030 Study:
A Path to Revolutionary Computational Aerosciences,” Slotnick et al, 2013
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What This (might) Mean for Applications MPI is not a BSP system

» Weak scaling limits the range of problems * BSP = Bulk Synchronous Programming
 Latency may be critical (also, some applications nearing limits of * Programmers like the BSP model, adopting it even when not
spatial parallelism) necessary (see “A Formal Approach to Detect Functionally
« Rich execution model makes performance portability Irrelevant Barriers in MPI Programs”)

unrealistic * Unlike most programming models, designed with a performance
model to encourage quantitative design in programs

* Applications will need to be flexible with both their use of .
abstractions and their implementation of those abstractions * MPI makes it easy to emulate a BSP system
* Rich set of collectives, barriers, blocking operations

* Programmers will need help with performance issues, - _ _
whatever parallel programming system is used * MPI (even MPI-1) sufficient for dynamic adaptive
programming

» The main issues are performance and “progress”
* Improving implementations and better HW support for integrated
CPUINIC coordination the answer
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MPI+X X = MPI (or X = &)

*Many reasons to consider MPI+X *MPI 3.0 features esp. important for Exascale
* Major: We always have: » Generalize collectives to encourage post BSP
* MPI+C, MPI+Fortran programming:
* Both C11 and Fortran include support of parallelism « Nonblocking collectives
(shared and distributed memory resp.) + Neighbor - including nonblocking - collectives
« Abstract execution models becoming more * Enhanced one-sided (recall AMM targets) _
lex * Precisely specified (see “Remote Memory Access Programming
comp in MPI=3,” Hoefler et at, in ACM TOPC);
* Experience has shown that the programmer must be http://dl.acm.org/citation.cfm?doid=2798443.2780584
given some access to performance features » Many more operations including RMW
* Options are (a) add support to MPI and (b) let X support * Enhanced thread safety

some aspects
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X = Programming with Threads What are the Issues?
*Many choices, different user targets and *Isn’t the beauty of MPI + X that MPI and X can be
performance goals learned (by users) and implemented (by
» Libraries: Pthreads, TBB developers) independently?
» Languages: OpenMP 4, C11/C++11 * Yes (sort of) for users
«C11 provides an adequate (and thus complex) * No for developers
memory model to write portable thread code *MPI and X must either partition or share resources
* Also needed for MPI-3 shared memory » User must not blindly oversubscribe

* Developers must negotiate
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More Effort needed on the “+” Some Resources to Negotiate

*MPI+X won’t be enough for Exascale if the work * CPU resources * NIC resources
for “+” is not done very well » Threads and contexts * Collective groups
.S fthi be | ification: * Cores (incl placement) * Routes
ome O . IS mgy € language spegl Ication: . « Cache « Power
» User-provided guidance on resource allocation, e.g., MPI_Info hints; .pP
thread-based endpoints ower » OS resources
» Some is developer-level standardization * Memory resources  Synchronization hardware
« A simple example is the MPI ABI specification — users should ignore but » Prefetch, outstanding load/ * Scheduling
benefit from developers supporting stores « Virtual memory
* Pinned pages or equivalent
NIC needs
* Transactional memory
regions
* Memory use (buffers)
* Power

MPI has already led the way in defining interlanguage compatibility,
application binary interfaces, and resource manager/program interfaces
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Summary Thanks!
* MPI remains the dominant system for massively parallel * Students
HPC because of its greatest common denominator * Tarun Prabhu (MPI Datatypes), Paul Eller (Algorithms exploiting non-
. - : blocking collectives), Samah Karim and Philipp Samfass (MPI shared
approach and precisely defined programming models memory), Ed Karrels MPI 1/0), Thiago Teixeira (Annotations), Hassan
« And because it doesn’t pretend to solve the really hard Eslami (HPC in Big Data), Dang Vu (MPI and threads)
problem _ genera| Iocality management and genera| » Xin Zhao (MPI RMA), Paul Sack (Better collectives), Vivek Kale (Fine grain
. . scheduling)
intranode programmin . .
.p 9 9 ) . * Blue Waters Sustained Petascale Project, supported by the
* MPI remains relevant for its core constituency National Science Foundation (award number OCI 07-25070) and
» And relevant as a building block for new and emerging applications the state of lllinois.
* MPI is currently the internode programming system « XPACC: Department of Energy, National Nuclear Security
planned for the next two generations of US Administration, Award Number DE-NA0002374
supercomputers « NSF Grant CNS-1161507

« And some argue for making it key to the intranode programming,
leaving single core to the language/compiler
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“25 Years of MPI” Symposium
September 25, 2017, Chicago, lllinois

* Whereas:

* MPI has become the de facto standard for high-performance portable
parallel computing, supporting both applications and libraries,

» Work continues to extend the approach of the standard to programming
models appropriate for today’s and tomorrow’s largest systems, and

* MPI is 25 years old this year;

* Therefore:

* A symposium on “25 Years of MPI” will be held this fall at the EuroMPI
meeting in Chicago. (Organizers: Rusty Lusk and Jesper Larsson Traff)

* Invited speakers include:

* Marc Snir
 Bill Gropp

* Geoffrey Fox
« Tony Hey

« Jim Cownie

* Martin Schulz
» Tony Skjellum
* Rajeev Thakur

* Rolf Hempel

» David Walker

« Jack Dongarra

* Rolf Rabenseifner

Rich Graham

Al Geist
Hans-Christian Hoppe
Torsten Hoefler



