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Dreams and Reality

* For codes that demand performance (and parallelism almost
always implies that performance is important enough to justify the
cost and complexity of parallelism), the dream is performance
portability

* The reality is that most codes require specialized code to achieve
high performance, even for non-parallel codes

» A typical refrain is “Let The Compiler Do It
 This is the right answer ...
« If only the compiler could do it

* Lets look at one of the simplest operations for a single core, dense matrix
transpose
» Transpose involves only data motion; no floating point order to respect
* Only a double loop (fewer options to consider)
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A Simple Example: Dense Matrix Transpose

« doj=1,n
do i=1,n =N
b(i,j) = a(j,i) Perf limit based
enddo on STREAM
enddo - /
* No temporal locality (data used T
once) N
« Spatial locality only if
(words/cacheline) * n fits in cache « Performance plummets
when matrices no longer

fit in cache
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Blocking for cache helps

 do jj=1,n,stride]
do ii=1,n,stridei
do j=jj,min(n,jj+stridej-1)
do i=ii,min(n,ii+stridei-1)
b(i.j) = a(j,i)
» Good choices of stridei and stridej can improve performance by a significant
factor

* How sensitive is the performance to the choices of stridei and stridej?
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Results: Blue Waters O3

Simple, unblocked code compiled
with O3 — 709MB/s

2000 1
1800 -
1600 - 18002000
1600-1800
1400 1 = 1400-1600
1200 - = 1200-1400 = 15002000
1000 - = 1000-1200 «1000-1500
=800-1000 = 500-1000
800 1 = 600-800 u0-500
600 - = 400-600
400 u200-400
=0-200

200




Real Codes Include Performance Workarounds

 Code excerpt from
VecMDot_Seq in PETSc R IR p—

case 2:
x1 = x[1];

» Code is unrolled to provide

sum2 += x1l*yy2[1];

performance 5o o,

sum0 += x0*yy0[0]; suml += x0*yyl[O0];
sum2 += x0*yy2[0];

 Decision was made once (and

X += j_rem;

verified as worth the effort at the

. yyl += j_rem;
time)
3j -= j_rem;

break;

« Remains part of the code hite (o0 1
forevermore X0 = 0l

x2 = x[2];

* Unroll by 4 probably good for el
VeCt0r|Zat|On sum0 += x0*yy0[0] + x1*yyO0[1l] + x2*yy0[2] + x3*yy0[3]; yyO0+=4;

suml += x0*yyl[0] + x1*yyl[1l] + x2*yyl[2] + x3*yyl[3]; yyl+=4;

* But not necessarily best for SUmE T yTYRLO) T MIIVRLLL ® ERI2] 4 a3yt
performance 20 = sumo;
« Does not address alignment 2] C e
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Practical Performance Optimization

* How to handle all the required optimizations together for many different
scenarios?

* How to keep the code maintainable?
» How to find the best sequence of optimizations?

* Requirements
« "Golden Copy” code runs without ICE — do not require “buy in” to the system
. rerlmit incremental adoption — apply ICE to subsets of the code, with subsets of
ools
« Coexist with other tools

 Separate generation of optimized code from develop/run so that users do not
need to install/run those tools. Allow tuning runs on “related” systems (e.g., x86

vectorization)
« Support ways to find the best sequence of optimizations
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lllinois Coding Environment (ICE)

* One pragmatic approach

+ Assumptions / / \‘%
- Fast code requires some expert intervention

« Can't all be done at compile time EEDIEDICIED
» Original code (in standard language) is maintained o
as reference * Approach
+ Can add information about computation to code * Annotations provide additional descriptive
information

» Center for Exascale Simulation of Plasma-Coupled
Combustion + Block name, expected loop sizes, etc.
» Source-to-source transformations used to create

* http://xpacc.illinois.edu .
code for compiler

» |CE used to support “Golden Copy” code — version _ _ o
natural for computational scientist, without code * Exploit tool ecosystem — interface to existing tools
optimizations » Original “Golden Copy” used for development,

correctness checks
« Database used to manage platform-specific
versions; detect changes that invalidate transformed
versions

» Don’t need to install/run transformation tools
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» Used with primary simulation code, PlasCom2


http://xpacc.illinois.edu/

ICE

» Golden copy approach: baseline version without architecture- or
compiler-specific optimizations (not buy-in)

» Search combined with application’s developer expertise

 Build-time, Compile-time and Runtime optimizations

* Non-prescriptive, Gradual adoption, Separation of Concerns

* Reuse of other optimizations tools already implemented
* Interfaces to simplify plug-in

» Search and optimization tools




ICE

» Source code is annotated to define code
regions

« Optimization file notation orchestrates
the use of the optimization tools on the
code regions defined

* Interface provides operations on the
Source code to invoke optimizations
through:

* Adding pragmas
« Adding labels
* Replacing code regions

» These operations are used by the
interface to plug-in optimization tools

* Most tools are source-to-source

» tools must understand output of previous
tools

FrontEnd

Source Code -
Opt Language (Fortran/C/C++) e Parser the original code

Parser e Extract Code Regions
Parser

Q 2

BackEnd Select 2
variant :

N %

¢ Goes through the optimization space

¢ Machine Learning methods to select
variants

ﬂ e Empirically evaluate variants

RoseLoops
Pips
— OpenMP / OpenACC

Clay
Moya

Code Gen

Evaluate

Best Variant
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Matrix Multiplication Example

#pragma @ICE loop=matmul
for (i=0; i<matSize; i++)
for (j=0; j<matSize; j++) {

for (k=0; k<matSize; k++ . . . L
fnatC[i][j] . matA[i][k% £ matBIK][]: }#[;r?gim;j;)mp parallel for schedule(static,1) private(i_t, k_t,j ti t t, k t t
} for(i_t=0;i_t<=127;i_t+=1)
; o L for(k_t=0; k t<=127;k_t+=1)
} # Buﬂ? command beforg compilation for (j t=0;j t<=3;j t+=1)
prebuildcmd: B | for (it t=47 ittt (4 +3) it 1)
L for(k_t t=2*k t;k t t<=(2*k_t)+1);, k t t+=1)
# Compilation command before tests for (Lt t=32*%j tj tt<=((32% t)+31): [t t+=1)
buildcmd: make realclean; make for(i=4*itti<=(@4*i tt)+3)i+=1)
for(k=8*k t t;k<=(8*k t t)+7);k+=1
#Command call for each test for EJ =16*j t t]<= ((((16 . j:t:t; N 12_));1_ e 1))
runemd: ./mme matCIi][] += matA[il[k] * matBIK](];
matmul:
- Pips.tiling+:
loop: 1
factor: [2..512, 2..512, 2..512]
- Pips.tiling+:
loop: 4
factor: [8, 16, 8]
- OpenMP.OMPFor+:




Matrix Multiplication Results

2000

700 * Two levels of tiling + OpenMP
* Original version: 78,825 ms
» 98x speedup (1 core)

1500 525

B
£ g
= 1000 w3 694x speedup (10 cores)
o o
3 ® + Avg 2.2x speedup over Pluto
- 500 175
0 0 20482 ELEMENTS
oo 4 68 ie ICC 17.0.1
CPUC
W PlutoTime M ICE Time INTEL E5-2660 V3
Pluto Speedup < ICE Speedup PLUTO PET BRANCH
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= Stencil 3D

Built command before compilation

prebuildcmd:
buildcmd:
make realclean; make CC={compiler} COPT={params}

buildoptions:
#pragma @ICE loop=stencil gcc?

for(i = 1; i < x-1; i++) { params:{'-0"':{'default': 3,'min': @, 'max': 3}}
for(j = 1; j < y-1; j++ icc:
fﬁi(k _’1? B Z zil? ki+§ { params:{'-0"':{'default': 3,'min': @, 'max': 3}}
= 2 2
B[i][j]1[k] = Ce * A[i]J[j][k] + €1 * ( #Command call f
ALi+1][31K] + A[E-1][3](K] + RunERel:; o/ sEenad

r

1024 20

ALLIG+100K] + ALI(5-110K) + | T A —
A[1][3][k+1] + A[i][3][k-1]);
} stencil:
rose_uiuc:
} - stripmine+:
} loop: 4
#pragma @ICE endloop factor: 16..1024
type: poweroftwo
- stripmine+:
loop: 3

factor: 16..1024
type: poweroftwo
- stripmine+:
loop: 2
factor: 16..1024
type: poweroftwo
- interchange+:
order:0,1,3,5,2,4,6

DOE/NNSA/ASC/PSAAPII:
The Center for Exascale Simulation of 16 X P A ‘ !

Plasma-coupled Combustion




Performance Results

R Search
» 3-D Stencil —
- 11,664 variants o " a3
] -==- gcc-03
« Max 12.6 sec o
« Min 3.68 sec O
: E |
« Speedup over simple code 5 s
e icc: 1.12x g iqﬂ
. gcc: 1.21x 10 P850 5566065060060060060060
beeog
"O-C-0 -G 6-0G 0-0-G 9-0-0 6-0-8 ©-G-0 ©-G-8 ©-G-0¢
3.5 A
0 160 260 3(;0 4(I)0 500

Variants Executed
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Why No Example of Transpose?

« Alesson in why it is critical to separate code generation from everyday use of
the optimized code

* Installing ICE and its full toolset is challenging
» ICE uses pip to install required external packages
« Good that ICE uses existing tools
» Bad that MacOS version of pip is so old that it can’t update itself
* When did software engineering stop considering backward compatibility for more than a few months?
» |CE uses rose to parse code

 After downloading rose and associated tools (and the Java JDK, which was not where the Oracle web
pages said it was), rose failed to build.

» “l don’t think you should try Rose on Mac. I've tried that before and couldn’t pull it off.”
* Medium term fix — rose moving to use clang (?)

» Short term fix — run ICE on Linux

- Real lesson — these tools are complex and fragile. ICE helps by providing a
way to separate the process of creatlng the code transformations and using
those transformations, while retaining “friendly” code
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Conclusions

* |t is often necessary to apply specific, system- and problem-
dependent optimizations to the source code to achieve high
performance

* |CE:

« Separation of Concerns (opt file) +

« Coexistence with other tools +

« Gradual adoption +

« Empirical search + Developer Knowledge

» Golden copy: the developer can focus on the problem
» Simple and easy to be used by the programmers
« Hard to get the tools to work though!
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This material is based in part upon work supported by the Department of Energy,
National Nuclear Security Administration, under Award Number DE-NA0002374.




