Managing Code
Transformations for Better
Performance Portability

William D. Gropp
wgropp.cs.lllinois.edu

with
Thiago Teixeira and David Padua

IYNCSA

Dreams and Reality

* For codes that demand performance (and parallelism almost
always implies that performance is important enough to justify the
cost and complexity of parallelism), the dream is performance
portability

* The reality is that most codes require specialized code to achieve
high performance, even for non-parallel codes

» A typical refrain is “Let The Compiler Do It
 This is the right answer ...
« If only the compiler could do it

* Lets look at one of the simplest operations for a single core, dense matrix
transpose
» Transpose involves only data motion; no floating point order to respect
* Only a double loop (fewer options to consider)

INNCSA

A Simple Example: Dense Matrix Transpose

« doj=1,n
do i=1,n =N
b(i,j) = a(j,i) Perf limit based
enddo on STREAM
enddo - /
* No temporal locality (data used T
once) N
« Spatial locality only if
(words/cacheline) * n fits in cache « Performance plummets
when matrices no longer

fit in cache

IYNCSA

Blocking for cache helps

 do jj=1,n,stride]
do ii=1,n,stridei
do j=jj,min(n,jj+stridej-1)
do i=ii,min(n,ii+stridei-1)
b(i.j) = a(j,i)
» Good choices of stridei and stridej can improve performance by a significant
factor

* How sensitive is the performance to the choices of stridei and stridej?

IYNCSA

Results: Blue Waters O3

Simple, unblocked code compiled
with O3 — 709MB/s

2000 1
1800 -
1600 - 18002000
1600-1800
1400 1 = 1400-1600
1200 - = 1200-1400 = 15002000
1000 - = 1000-1200 «1000-1500
=800-1000 = 500-1000
800 1 = 600-800 u0-500
600 - = 400-600
400 u200-400
=0-200

200

Real Codes Include Performance Workarounds

 Code excerpt from
VecMDot_Seq in PETSc R IR p—

case 2:
x1 = x[1];

» Code is unrolled to provide

sum2 += x1l*yy2[1];

performance 5o o,

sum0 += x0*yy0[0]; suml += x0*yyl[O0];
sum2 += x0*yy2[0];

 Decision was made once (and

X += j_rem;

verified as worth the effort at the

. yyl += j_rem;
time)
3j -= j_rem;

break;

« Remains part of the code hite (o0 1
forevermore X0 = 0l

x2 = x[2];

* Unroll by 4 probably good for el
VeCt0r|Zat|On sum0 += x0*yy0[0] + x1*yyO0[1l] + x2*yy0[2] + x3*yy0[3]; yyO0+=4;

suml += x0*yyl[0] + x1*yyl[1l] + x2*yyl[2] + x3*yyl[3]; yyl+=4;

* But not necessarily best for SUmE T yTYRLO) T MIIVRLLL ® ERI2] 4 a3yt
performance 20 = sumo;
« Does not address alignment 2] C e

INNCSA

Practical Performance Optimization

* How to handle all the required optimizations together for many different
scenarios?

* How to keep the code maintainable?
» How to find the best sequence of optimizations?

* Requirements
« "Golden Copy” code runs without ICE — do not require “buy in” to the system
. rerlmit incremental adoption — apply ICE to subsets of the code, with subsets of
ools
« Coexist with other tools

 Separate generation of optimized code from develop/run so that users do not
need to install/run those tools. Allow tuning runs on “related” systems (e.g., x86

vectorization)
« Support ways to find the best sequence of optimizations

INNCSA

lllinois Coding Environment (ICE)

* One pragmatic approach

+ Assumptions / / \‘%
- Fast code requires some expert intervention

« Can't all be done at compile time EEDIEDICIED
» Original code (in standard language) is maintained o
as reference * Approach
+ Can add information about computation to code * Annotations provide additional descriptive
information

» Center for Exascale Simulation of Plasma-Coupled
Combustion + Block name, expected loop sizes, etc.
» Source-to-source transformations used to create

* http://xpacc.illinois.edu .
code for compiler

» |CE used to support “Golden Copy” code — version _ _ o
natural for computational scientist, without code * Exploit tool ecosystem — interface to existing tools
optimizations » Original “Golden Copy” used for development,

correctness checks
« Database used to manage platform-specific
versions; detect changes that invalidate transformed
versions

» Don’t need to install/run transformation tools

IYNCSA

» Used with primary simulation code, PlasCom2

http://xpacc.illinois.edu/

ICE

» Golden copy approach: baseline version without architecture- or
compiler-specific optimizations (not buy-in)

» Search combined with application’s developer expertise

 Build-time, Compile-time and Runtime optimizations

* Non-prescriptive, Gradual adoption, Separation of Concerns

* Reuse of other optimizations tools already implemented
* Interfaces to simplify plug-in

» Search and optimization tools

ICE

» Source code is annotated to define code
regions

« Optimization file notation orchestrates
the use of the optimization tools on the
code regions defined

* Interface provides operations on the
Source code to invoke optimizations
through:

* Adding pragmas
« Adding labels
* Replacing code regions

» These operations are used by the
interface to plug-in optimization tools

* Most tools are source-to-source

» tools must understand output of previous
tools

FrontEnd

Source Code -
Opt Language (Fortran/C/C++) e Parser the original code

Parser e Extract Code Regions
Parser

Q 2

BackEnd Select 2
variant :

N %

¢ Goes through the optimization space

¢ Machine Learning methods to select
variants

ﬂ e Empirically evaluate variants

RoseLoops
Pips
— OpenMP / OpenACC

Clay
Moya

Code Gen

Evaluate

Best Variant

INNCSA

Matrix Multiplication Example

#pragma @ICE loop=matmul
for (i=0; i<matSize; i++)
for (j=0; j<matSize; j++) {

for (k=0; k<matSize; k++ . . . L
fnatC[i][j] . matA[i][k% £ matBIK][]: }#[;r?gim;j;)mp parallel for schedule(static,1) private(i_t, k_t,j ti t t, k t t
} for(i_t=0;i_t<=127;i_t+=1)
; o L for(k_t=0; k t<=127;k_t+=1)
} # Buﬂ? command beforg compilation for (j t=0;j t<=3;j t+=1)
prebuildcmd: B | for (it t=47 ittt (4 +3) it 1)
L for(k_t t=2*k t;k t t<=(2*k_t)+1);, k t t+=1)
Compilation command before tests for (Lt t=32*%j tj tt<=((32% t)+31): [t t+=1)
buildcmd: make realclean; make for(i=4*itti<=(@4*i tt)+3)i+=1)
for(k=8*k t t;k<=(8*k t t)+7);k+=1
#Command call for each test for EJ =16*j t t]<= ((((16 . j:t:t; N 12_));1_ e 1))
runemd: ./mme matCIi][] += matA[il[k] * matBIK](];
matmul:
- Pips.tiling+:
loop: 1
factor: [2..512, 2..512, 2..512]
- Pips.tiling+:
loop: 4
factor: [8, 16, 8]
- OpenMP.OMPFor+:

Matrix Multiplication Results

2000

700 * Two levels of tiling + OpenMP
* Original version: 78,825 ms
» 98x speedup (1 core)

1500 525

B
£ g
= 1000 w3 694x speedup (10 cores)
o o
3 ® + Avg 2.2x speedup over Pluto
- 500 175
0 0 20482 ELEMENTS
oo 4 68 ie ICC 17.0.1
CPUC
W PlutoTime M ICE Time INTEL E5-2660 V3
Pluto Speedup < ICE Speedup PLUTO PET BRANCH

INNCSA

= Stencil 3D

Built command before compilation

prebuildcmd:
buildcmd:
make realclean; make CC={compiler} COPT={params}

buildoptions:
#pragma @ICE loop=stencil gcc?

for(i = 1; i < x-1; i++) { params:{'-0"':{'default': 3,'min': @, 'max': 3}}
for(j = 1; j < y-1; j++ icc:
fﬁi(k _’1? B Z zil? ki+§ { params:{'-0"':{'default': 3,'min': @, 'max': 3}}
= 2 2
B[i][j]1[k] = Ce * A[i]J[j][k] + €1 * (#Command call f
ALi+1][31K] + A[E-1][3](K] + RunERel:; o/ sEenad

r

1024 20

ALLIG+100K] + ALI(5-110K) + | T A —
A[1][3][k+1] + A[i][3][k-1]);
} stencil:
rose_uiuc:
} - stripmine+:
} loop: 4
#pragma @ICE endloop factor: 16..1024
type: poweroftwo
- stripmine+:
loop: 3

factor: 16..1024
type: poweroftwo
- stripmine+:
loop: 2
factor: 16..1024
type: poweroftwo
- interchange+:
order:0,1,3,5,2,4,6

DOE/NNSA/ASC/PSAAPII:
The Center for Exascale Simulation of 16 X P A ‘ !

Plasma-coupled Combustion

Performance Results

R Search
» 3-D Stencil —
- 11,664 variants o " a3
] -==- gcc-03
« Max 12.6 sec o
« Min 3.68 sec O
: E |
« Speedup over simple code 5 s
e icc: 1.12x g iqﬂ
. gcc: 1.21x 10 P850 5566065060060060060060
beeog
"O-C-0 -G 6-0G 0-0-G 9-0-0 6-0-8 ©-G-0 ©-G-8 ©-G-0¢
3.5 A
0 160 260 3(;0 4(I)0 500

Variants Executed

IYNCSA

Why No Example of Transpose?

« Alesson in why it is critical to separate code generation from everyday use of
the optimized code

* Installing ICE and its full toolset is challenging
» ICE uses pip to install required external packages
« Good that ICE uses existing tools
» Bad that MacOS version of pip is so old that it can’t update itself
* When did software engineering stop considering backward compatibility for more than a few months?
» |CE uses rose to parse code

 After downloading rose and associated tools (and the Java JDK, which was not where the Oracle web
pages said it was), rose failed to build.

» “l don’t think you should try Rose on Mac. I've tried that before and couldn’t pull it off.”
* Medium term fix — rose moving to use clang (?)

» Short term fix — run ICE on Linux

- Real lesson — these tools are complex and fragile. ICE helps by providing a
way to separate the process of creatlng the code transformations and using
those transformations, while retaining “friendly” code

IYNCSA

Conclusions

* |t is often necessary to apply specific, system- and problem-
dependent optimizations to the source code to achieve high
performance

* |CE:

« Separation of Concerns (opt file) +

« Coexistence with other tools +

« Gradual adoption +

« Empirical search + Developer Knowledge

» Golden copy: the developer can focus on the problem
» Simple and easy to be used by the programmers
« Hard to get the tools to work though!

IYNCSA

This material is based in part upon work supported by the Department of Energy,
National Nuclear Security Administration, under Award Number DE-NA0002374.

