
Challenges for Developing &
Supporting HPC Applications

William Gropp
wgropp.cs.illinois.edu

Its More than Programming
• HPC Applications are about solving problems
• Programming is only one small(ish) part that

includes
•  Data management (input, output, visualization,

analytics, …)
•  Performance and correctness debugging
•  Integration with workflows
•  And yes, dealing with limitations in programming

systems and their implementations, particularly the
growing diversity in architectures

Speakers
• Torsten Hoefler, ETH Zürich

•  Automatic compiler-driven GPU acceleration with Polly-
ACC

•  Jeffrey Hollingsworth, University of Maryland
•  Bugs and Speed in HPC Applications: Past, Present,

and Future
• Michela Taufer, University of Tennessee, Knoxville

•  Modeling the Next-Generation High Performance
Schedulers

HPC Application Lifecycle (Partial)
•  Design

•  Choice of mathematical models
•  Choice of algorithms

•  Implementation
•  Choice of programming approaches
•  Choice of Libraries and the use of code analysis tools

•  Testing
•  Correctness
•  Performance (and do you know what the achievable performance is?)

•  Science workflow
•  Creating input data and analyzing output data - includes mesh generation (e.g., CFD) or

data partitioning (e.g., bioinformatics)
•  Run ensembles for uncertainty quantification, parameter sweeps, nonlinear optimization, …

•  Repeat each step in all combinations…

Real Challenges in Programming
•  For HPC, we are looking for high performance

•  FLOPS and Memory Bandwidth (“roofline”
https://dl.acm.org/citation.cfm?id=1498785)

•  FLOPS and Memory Bandwidth and Latency (Execution-Cache-Memory
(ECM) model
https://link.springer.com/chapter/
10.1007%2F978-3-642-14390-8_64)

•  FLOPS and Memory Bandwidth and Instruction Rate (“Achieving high
sustained performance in an unstructured mesh CFD application”
https://dl.acm.org/citation.cfm?id=331600 , 1999)

•  Node performance is often key (in 1999 result above – 7x performance
improvement from memory locality on the node)

•  In distributed memory programming, the challenge is managing the
distributed data structures and the operations upon them

•  It would be great if a programming language provided your data structure
(and some are close) but the reality is that most apps have specific needs

Managing Code Transformations
• Many tools exist (some you’ll hear about today)
• Need a way to

•  Separate additional abstractions (e.g., loop count is small)
vs. proscriptive requirements (e.g., unroll loop by 3)

•  Invoke multiple tools
•  Transformation generators, autotuners, …

•  Remember good (and bad!) choices of parameters,
transformations, etc. by system/input/characterization

•  Provide ways to confirm transformations preserve
correctness

What is Correctness?
•  How do we know that the performance portable code is correct?

•  Or even if it will compute the same result as the original code
•  And what is “the same result”?

•  It is not enough to prove that any code transformations are correct
•  MPICH used to test whether the compiler returned the same result in a and c for these

two statements:
•  a = joe->array[OFF+b+1];

c = joe->array[OFF+1+b];
•  Because one major vendor compiler got this wrong.

•  And you still need to prove that the hardware implements all of the operations
correctly

•  And vectorization is already likely to produce results that are not bitwise identical to the
non-vector version (which might depend on how data is aligned at runtime)

•  Question: How do you test that the performance portable code is computing
what is intended?

•  Proving code transformations correct is necessary but not sufficient

Illinois Coding Environment (ICE)
•  One pragmatic approach
•  Assumptions

•  Fast code requires some expert
intervention

•  Can’t all be done at compile time
•  Original code (in standard

language) is maintained as
reference (Golden Copy)

•  Can add information about
computation to code

•  Center for Exascale Simulation of
Plasma-Coupled Combustion

•  http://xpacc.illinois.edu

•  Approach
•  Annotations provide additional

descriptive information
•  Block name, expected loop sizes, etc.

•  Source-to-source transformations used
to create code for compiler

•  Exploit tool ecosystem – interface to
existing tools

•  Original “Golden Copy” used for
development, correctness checks

•  Database used to manage platform-
specific versions; detect changes that
invalidate transformed versions

Work of Thiago Teixeira and David Padua

Performance Results

• 3-D Stencil
•  11,664 variants
•  Max 12.6 sec
•  Min 3.68 sec
•  Speedup over simple

code
•  icc: 1.12x
•  gcc: 1.21x

Summary
• HPC Applications require many kinds of support over

their lifetime, especially beyond programming
• Many tools and approaches exist

•  A challenge is to make these tools work together
•  (though I have not discussed this) HPC and “Big Data”

environments share problems and solutions
•  MPI and scalable algorithms for collective operations from

HPC used in ML
•  Data systems and tools from big data offer better

capabilities and user productivity for HPC
•  Only a start here. Both sides have much to learn and to

offer

