Challenges for Developing &
Supporting HPC Applications

William Gropp
wgropp.cs.illinois.edu



2

2

« HPC Applications are about solving problems

* Programming is only one small(ish) part that
includes

« Data management (input, output, visualization,
analytics, ...)

» Performance and correctness debugging
* Integration with workflows

* And yes, dealing with limitations in programming
systems and their implementations, particularly the
growing diversity in architectures

LA A0 e



Wz LI A A A A A i

2

* Torsten Hoefler, ETH Zurich

« Automatic compiler-driven GPU acceleration with Polly-
ACC

« Jeffrey Hollingsworth, University of Maryland

* Bugs and Speed in HPC Applications: Past, Present,
and Future

* Michela Taufer, University of Tennessee, Knoxville

* Modeling the Next-Generation High Performance
Schedulers



HPC Application Lifecycle (Partial)

Design
* Choice of mathematical models
» Choice of algorithms

Implementation
» Choice of programming approaches
» Choice of Libraries and the use of code analysis tools

Testing
* Correctness
» Performance (and do you know what the achievable performance is?)

Science workflow

» Creating input data and analyzing output data - includes mesh generation (e.g., CFD) or
data partitioning (e.g., bioinformatics)
* Run ensembles for uncertainty quantification, parameter sweeps, nonlinear optimization, ...

Repeat each step in all combinations...



2 ZL ]

2

« For HPC, we are looking for high performance

« FLOPS and Memor_¥ Bandwidth (“roofline”
https://dl.acm.org/citation.cfm?id=1498785 )

« FLOPS and Memory Bandwidth and Latency (Execution-Cache-Memory
ECM) model

ttps: //link springer.com/chapter
10 )1(567%2F9;8 § 04?2 Ié[39(§ 8 é4 )

. FLOP_S and Memory Bandwidth and Instruction Rate (“Achieving high
sustained performance in an unstructured mesh CFD application”
https://dl.acm.org/citation.cfim?id=331600 , 1999)

* Node performance is often key ﬂi.n 1999 result above - 7x performance
improvement from memory locality on the node)

* In distributed memory programming, the challenge is managing the
distributed data structures and the operations upon them

It would be great if a programming language provided your data structure
(and some are close) but the reality is that most apps have specific needs




2 ]

2
M . Cd I I t.

* Many tools exist (some you’ll hear about today)

* Need a way to
« Separate additional abstractions (e.g., loop count is small)
VS. proscriptive requirements (e.g., unroll loop by 3)
* Invoke multiple tools
» Transformation generators, autotuners, ...

« Remember good (and bad!) choices of parameters,
transformations, etc. by system/input/characterization

* Provide ways to confirm transformations preserve
correctness



V72224444044ddlpllzzzzzzzzzzzzzzzzzizzizzzzzuzzzzzzuzzzzzzzzizzzizzzizizzzzzzzzzzzzzizzzzzzazzzzzzzzzzzizziazzziaazzizziizzzizzzzv’iuaupnnzzzizzazzzuzzzzzzzzzizzizizzzizizizzzizzzzzzz;zzz;zzzazz
hat is Correctness?
:
 How do we know that the performance portable code is correct?

* Or even if it will compute the same result as the original code
* And what is “the same result”?

It is not enough to prove that any code transformations are correct

* MPICH used to test whether the compiler returned the same result in a and c for these
two statements:

e a= joe->array[[OFF+b+1]];
¢ =joe->array|OFF+1+b];

« Because one major vendor compiler got this wrong.

» And you still need to prove that the hardware implements all of the operations
correctly

» And vectorization is already likely to produce results that are not bitwise identical to the
non-vector version (which might depend on how data is aligned at runtime)

* Question: How do you test that the performance portable code is computing
what is intended?

* Proving code transformations correct is necessary but not sufficient



lllinois Coding Environment (ICE)

Golden Copy ICE Optimization File

* One pragmatic approach

* Assumptions

- Fast code requires some expert
intervention

« Can't all be done at compile time

 Original code (in standard
language) is maintained as
reference (Golden Copy)

 Can add information about
computation to code
» Center for Exascale Simulation of
Plasma-Coupled Combustion
* http://xpacc.illinois.edu

- Optimized - Loops =0T - Heterogeneous Architectures

* App

roach
Annotations provide additional
descriptive information

* Block name, expected loop sizes, etc.
Source-to-source transformations used
to create code for compiler

» Exploit tool ecosystem - interface to
existing tools

* Original “Golden Copy” used for
development, correctness checks

Database used to manage platform-
specific versions; detect changes that
invalidate transformed versions

INNCSA



= Stencil 3D

#pragma @ICE loop=stencil

for{(i = 1; i < x-1; i++) {
for(j = 1; j < y-1; j++) {
for(k = 1; k < z-1; k++) {
B[i]J[j][k] = ce * A[i][j][k] + c1 * (
A[i+1][J]1[k] + A[i-1][J]1[k] +
A[i][3+1]1[k] + A[i][J-1]1[k] +
A[i][3]1[k+1] + A[i][3]1[k-1]);
:
}
g

#pragma @ICE endloop

Work of Thiago Teixeira and David Padua

DOE/NNSA/ASC/PSAAPIIL:
The Center for Exascale Simulation of
Plasma-coupled Combustion

16

prebuildémdf

buildcmd:
make realclean; make CC={compiler} COPT={params}
buildoptions:
gcc:
params:{'-0":{'default’': 3, 'min': 9, 'max': 3}}
icc:
params:{'-0":{'default’': 3, "'min': ©, 'max"': 3}}

runcmd: ./sten3d 1024 20

tuning: on
stencil:
rose_uiuc:
- stripmine+:
loop: 4
factor: 16..1024
type: poweroftwo
- stripmine+:
loop: 3
factor: 16..1024
type: poweroftwo
- stripmine+:
loop: 2
factor: 16..1024
type: poweroftwo
- interchange+:
order:0,1,3,5,2,4,6

XPACC




Performance Results

search
» 3-D Stencil e
* 11,664 variants B
« Max 12.6 sec S S —
« Min 3.68 sec jj as
» Speedup over simple® ., fsasswssssssssssmssassaasss
code O reococsessecestecrsscecred
* icc: 1.12x - ; 50 250 e s 530
. goc: 1.21x

INNCSA



Wz 2

2

« HPC Applications require many kinds of support over
their lifetime, especially beyond programming

* Many tools and approaches exist
* A challenge is to make these tools work together

* (though | have not discussed this) HPC and “Big Data”
environments share problems and solutions
« MPI and scalable algorithms for collective operations from
HPC used in ML

 Data s.?{s_tems and tools from_b_ifg data offer better
capabilities and user productivity for HPC

. Ofrfﬂy a start here. Both sides have much to learn and to
offer



