
Using Node Information to
Implement MPI Cartesian

Topologies
William Gropp

wgropp.cs.Illinois.edu

MPI Virtual Process Topologies

• Lets user describe some common communication patterns

• Promises
• Better performance (with “reorder” flag true)

• Convenience in describing communication (at least with Cartesian process
topologies)

• Reality
• “Reorder” for performance rarely implemented

• Few examples include NEC SX series and IBM BlueGene/L

• Challenge to implement in general
• Perfect mapping complex to achieve except in special cases

• And perfect is only WRT the abstraction, not the real system

• How much is MPI_Cart_create used?

MPI_Cart_create is rarely used by applications
or optimized by implementations
Benchmark Codes Uses

Cart
With
reorder

NAS PB 3.3.1 No
HOMB 1.0 No
POP 2.0 No
HPCC 1.4.1 No
CORAL HACC Yes No

nekbone No
QMCPACK No
Snap Yes Yes

SPP-2017 PSDNS Yes No
WRFV3 Yes No

LAMMPS 16
Mar 2018

Yes Yes

• Vendor MPI for tested systems
does not remap in Cart_create

• Neither MPICH 3.2.1 nor Open
MPI 3.1.0 remap in Cart_create

• Some systems have in the past
• NEC SX
• IBM BlueGene/L

• Focus has been on adapting to
the network topology

• Complex problem in general,
even on mesh networks

Does Process Topology Matter?
• Example: comparison of halo exchanges for

several systems and patterns
• Comparing Rates

• Ratios of a single sender to all processes sending (in
rate)

• Expect a factor of roughly 2 (since processes must
also receive). Larger factors are bad (using more
processes takes more time for the same amount of
data per process)

• BG gives roughly double the halo rate. XTn and XE6
are much higher.

• Conventional explanation
• Blue Gene has a simple interconnect topology with

independent links in the Cartesian dimensions
• Cray process mapping does not respect process

topology; allocation of nodes not as clean or simple as
on Blue Gene

System 4 Neighbors 8 Neighbors
Periodic Periodic

BG/L 2.24 2.01

BG/P 3.8 2.2
BG/Q 1.98
XT3 7.5 8.1 9.08 9.41
XT4 10.7 10.7 13.0 13.7
XE6 15.6 15.9

Is There Another Explanation?
• Multicore nodes have high

intranode bandwidth
• Higher in aggregate than typical NIC
• Replace the postal model with the

max rate model
• Typical process mappings do not

match the 2 level hierarchy of
processes on nodes

• This ignores further details, such as
sockets on nodes

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NI
C

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NI
C

Modeling MPI Communication Performance on SMP Nodes: Is it Time to Retire
the Ping Pong Test, W Gropp, L Olson, P Samfass, Proceedings of EuroMPI 16,

https://doi.org/10.1145/2966884.2966919

https://doi.org/10.1145/2966884.2966919

Example Cartesian Process Mesh

0 1

4 5

2 3

6 7

8 9

12 13

10 11

14 15

Example Cartesian Process Mesh – Four Nodes (Desired)

0 1

4 5

2 3

6 7

8 9

12 13

10 11

14 15

Example Cartesian Process Mesh – Four Nodes (Typical process mapping)

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Can We Do Better?
• Hypothesis: A better process mapping within a node will provide

significant benefits
• Ignore the internode network topology

• Vendors have argued that their network is fast enough that process mapping isn’t
necessary

• They may be (almost) right – once data enters the network

• Idea for Cartesian Process Topologies
• Identify nodes (see MPI_Comm_split_type)
• Map processes within a node to minimize internode communication

• Trading intranode for internode communication
• Details follow…

Algorithm
Input: oldcomm : communicator of processes

dims : dimensions of virtual Cartesian mesh
numdims : number of dimensions

Output: nodecartcomm : communicator with processes
reordered in a Cartesian mesh

Local Variables:
nodecomm : communicator of processes on the same node
leadercomm : communicator of leaders on each node
intradims : Processor mesh for processes on a node
interdims : Processor mesh of the nodes (1 entry per

node)
intracoords: Coordinate of this process on node in

mesh of intradims
intercoords: Coordinate of this node in mesh of

interdims
coords : Coordinate of this process in mesh (as

reordered)

Step 1: Find nodes
MPI_Comm_split_type(oldcomm,

MPI_COMM_TYPE_SHARED, rank,
MPI_INFO_NULL, &nodecomm)

Step 2: Assemble comm of node leaders
MPI_Comm_rank(nodecomm, &nrank)
color = MPI_UNDEFINED
if (nrank == 0) color = 0
MPI_Comm_split(oldcomm, color, oldrank,

&leadercomm)
Step 3: Inform all processes of the number of nodes

if (color == 0) MPI_Comm_size(leadercomm, &nnodes)
MPI_Bcast(&nnodes, 1, MPI_INT, 0, nodecomm)

Algorithm
Input: oldcomm : communicator of processes

dims : dimensions of virtual Cartesian mesh
numdims : number of dimensions

Output: nodecartcomm : communicator with processes
reordered in a Cartesian mesh

Local Variables:
nodecomm : communicator of processes on the same node
leadercomm : communicator of leaders on each node
intradims : Processor mesh for processes on a node
interdims : Processor mesh of the nodes (1 entry per

node)
intracoords: Coordinate of this process on node in

mesh of intradims
intercoords: Coordinate of this node in mesh of

interdims
coords : Coordinate of this process in mesh (as

reordered)

Step 1: Find nodes
MPI_Comm_split_type(oldcomm,

MPI_COMM_TYPE_SHARED, rank,
MPI_INFO_NULL, &nodecomm)

Step 2: Assemble comm of node leaders
MPI_Comm_rank(nodecomm, &nrank)
color = MPI_UNDEFINED
if (nrank == 0) color = 0
MPI_Comm_split(oldcomm, color, oldrank,

&leadercomm)
Step 3: Inform all processes of the number of nodes

if (color == 0) MPI_Comm_size(leadercomm, &nnodes)
MPI_Bcast(&nnodes, 1, MPI_INT, 0, nodecomm)

Algorithm
Input: oldcomm : communicator of processes

dims : dimensions of virtual Cartesian mesh
numdims : number of dimensions

Output: nodecartcomm : communicator with processes
reordered in a Cartesian mesh

Local Variables:
nodecomm : communicator of processes on the same node
leadercomm : communicator of leaders on each node
intradims : Processor mesh for processes on a node
interdims : Processor mesh of the nodes (1 entry per

node)
intracoords: Coordinate of this process on node in

mesh of intradims
intercoords: Coordinate of this node in mesh of

interdims
coords : Coordinate of this process in mesh (as

reordered)

Step 1: Find nodes
MPI_Comm_split_type(oldcomm,

MPI_COMM_TYPE_SHARED, rank,
MPI_INFO_NULL, &nodecomm)

Step 2: Assemble comm of node leaders
MPI_Comm_rank(nodecomm, &nrank)
color = MPI_UNDEFINED
if (nrank == 0) color = 0
MPI_Comm_split(oldcomm, color, oldrank,

&leadercomm)
Step 3: Inform all processes of the number of nodes

if (color == 0) MPI_Comm_size(leadercomm, &nnodes)
MPI_Bcast(&nnodes, 1, MPI_INT, 0, nodecomm)

Algorithm con’t

Step 4: Find 2-level decomposition of
dimensions

MPI_Comm_size(nodecomm, &nsize)

Confirm that nsize is the same for all
processes in oldcomm (required for algorithm)

Distribute factors of nodesize to create
intradims, attempting to make intradims
"square", with

intradims[i] * interdims[i] == dims[i],

and such that sum(interdims) is small

(see later slide for details of this step)

Step 5: Find coordinates in virtual mesh

From rank in leadercomm, compute
coordinates of node in mesh of size interdims

From rank in nodecomm, compute coordinates
of process in mesh of size intradims

coords[i] = intracoords[i] +

intercoords[i] * intradims[i]

Step 6: Find rank of process in output
communicator based on coordinates in row-
major order, and create communicator

rr = coords[0]

for (i=1; i<numdims; i++)

rr = rr * dims[i] + coords[i]

MPI_Comm_split(oldcomm, 0, rr,
&nodecartcomm)

Algorithm con’t

Step 4: Find 2-level decomposition of
dimensions

MPI_Comm_size(nodecomm, &nsize)

Confirm that nsize is the same for all
processes in oldcomm (required for algorithm)

Distribute factors of nodesize to create
intradims, attempting to make intradims
"square", with

intradims[i] * interdims[i] == dims[i],

and such that sum(interdims) is small

Step 5: Find coordinates in virtual mesh
From rank in leadercomm, compute coordinates
of node in mesh of size interdims
From rank in nodecomm, compute coordinates
of process in mesh of size intradims

coords[i] = intracoords[i] +
intercoords[i] * intradims[i]

Step 6: Find rank of process in output
communicator based on coordinates in row-major
order, and create communicator

rr = coords[0]

for (i=1; i<numdims; i++)

rr = rr * dims[i] + coords[i]

MPI_Comm_split(oldcomm, 0, rr,
&nodecartcomm)

Algorithm con’t

Step 4: Find 2-level decomposition of
dimensions

MPI_Comm_size(nodecomm, &nsize)

Confirm that nsize is the same for all
processes in oldcomm (required for algorithm)

Distribute factors of nodesize to create
intradims, attempting to make intradims
"square", with

intradims[i] * interdims[i] == dims[i],

and such that sum(interdims) is small

Step 5: Find coordinates in virtual mesh

From rank in leadercomm, compute
coordinates of node in mesh of size interdims

From rank in nodecomm, compute coordinates
of process in mesh of size intradims

coords[i] = intracoords[i] +

intercoords[i] * intradims[i]

Step 6: Find rank of process in output
communicator based on coordinates in
row-major order, and create communicator

rr = coords[0]

for (i=1; i<numdims; i++)

rr = rr * dims[i] + coords[i]

MPI_Comm_split(oldcomm, 0, rr,
&nodecartcomm)

Finding a “good” intradims

• Try to make the intradims
“square”, subject to the
constraints established by
dims[]

• Note that dims can make a
good choice for intradims
impossible

• MPI_Dims_create is not, in fact,
helpful

• Replacements are needed that
take into account the specific
communicator

Step 1: Factor node size into primes

Step 2: Set intradims[i] to 1 and

remaindims[i] to dims[i]

Step 3: Take the largest prime factor fac

find j such that

fac divides remaindims[j] and

remaindims[j] is larger than

remaindims[k] for any k such

that fac also divides remaindims[k]

Step 4: Set intradims[j] to intradims[j]*fac and

remainsdims[j] to remaindims[j]/fac

Step 5: Repeat from Step 3 until all factors are

distributed

Testing the Hypothesis: The Systems
• Blue Waters at Illinois

• Cray XE6/XK7
• 3D mesh (Gemini); service nodes embedded in mesh
• 22,636 XE6 nodes, each with 2 AMD Interlagos (and 4228 XK7 nodes)

• Theta at Argonne
• Cray XC40
• Dragonfly (Aires) interconnect
• 4392 Intel KNL nodes

• Piz Daint at Swiss National Supercomputing Center
• Cray XC50/XC40
• Dragonfly (Aires) interconnect
• 5320 XC50 and 1813 XC40 nodes

Comparing 2D Halo Exchanges

0.00E+00	

2.00E+08	

4.00E+08	

6.00E+08	

8.00E+08	

1.00E+09	

1.20E+09	

100	 1000	 10000	 100000	

B/
s	p

er
	p
ro
ce
ss
	

Message	Size	

2D	Halo	Exchange	

Cart-16	

Cart-32	

Cart-64	

Ncart-16	

Ncart-32	

Ncart-64	

0.00E+00	

1.00E+08	

2.00E+08	

3.00E+08	

4.00E+08	

5.00E+08	

6.00E+08	

7.00E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	P
ro
ce
ss
	

Message	Size	

2D	Halo	Exchange	

Cart-32x32	

Cart-64x32	

Ncart-32x32	

Ncart-64x32	

0.00E+00	

5.00E+07	

1.00E+08	

1.50E+08	

2.00E+08	

2.50E+08	

3.00E+08	

3.50E+08	

4.00E+08	

4.50E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	p
ro
ce
ss
	

Message	Size	

3D	Halo	Exchange	

C-9x8x8	

C-12x12x8	

C-16x12x12	

C-18x16x16	

C-24x24x16	

C-32x24x24	

N-9x8x8	

N-12x12x8	

N-16x12x12	

N-18x16x16	

N-24x24x16	

N-32x24x24	

Blue Waters

Theta

Piz Daint

Comparing 3D Halo Exchanges

0.00E+00	

1.00E+08	

2.00E+08	

3.00E+08	

4.00E+08	

5.00E+08	

6.00E+08	

7.00E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	p
ro
ce
ss
	

Message	Size	

3D	Halo	Exchange	

Cart-8	

Cart-16	

Ncart-8	

Ncart-16	

0.00E+00	
5.00E+07	
1.00E+08	
1.50E+08	
2.00E+08	
2.50E+08	
3.00E+08	
3.50E+08	
4.00E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	P
ro
ce
ss
	

Message	Size	

3D	Halo	Exchange	

Cart-16x8x8	

Cart-16x16x8	

Ncart-16x8x8	

Ncart-16x16x8	

0.00E+00	

5.00E+07	

1.00E+08	

1.50E+08	

2.00E+08	

2.50E+08	

3.00E+08	

3.50E+08	

4.00E+08	

4.50E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	p
ro
ce
ss
	

Message	Size	

3D	Halo	Exchange	

C-9x8x8	

C-12x12x8	

C-16x12x12	

C-18x16x16	

C-24x24x16	

C-32x24x24	

N-9x8x8	

N-12x12x8	

N-16x12x12	

N-18x16x16	

N-24x24x16	

N-32x24x24	

Blue Waters

Theta

Piz Daint

Comparing On- and Off-node Communication
• Number of intranode (on-

node) and internode (off-
node) communication
partners per process

• 16 processes per node
• Size is Cartesian virtual

process topology
• “Nodecart” mapping is

significantly better
• In terms of reducing off-node

communication in favor of
on-node communication

On-node Off-node

Type Dim Size Min Max Avg Min Max Avg

Cart 2 128x128 1 2 1.88 2 3 2.12

Nodecart 2 128x128 2 4 3 0 2 1

Cart 3 32x32x16 1 2 1.88 4 5 4.12

Nodecart 3 32x32x16 3 4 3.5 2 3 2.5

Comparing Performance in A Stencil Sweep
• 2D Stencil (5-point operator)

sweep on 4096 processors
• 256 nodes of 16 processes
• Code used in “Advanced MPI”

tutorial at SC
• Based on code from Torsten

Hoefler
• Rates in GFLOP/s
• NxN global mesh
• “Nodecart” shows modest but

consistent advantage

N Cart Nodecart Ratio
256 30.1 32.4 1.08
512 118 121 1.03
1024 432 491 1.14
2048 1550 1670 1.08
4096 3170 3370 1.11
8192 4400 4710 1.07
16384 5960 6170 1.04

How Important is Network Topology?

• No answer yet, but…

• 432 nodes, 3D halo exchange on
Blue Waters

• Requested a cube of nodes, used
non-standard routines to implement
mapping for network topology

• Part of study into scalable Krylov
methods (looking to avoid the
blocking MPI_Allreduce)

• Nodecart version provides most of
the benefit with no need for network
topology information

• Some (nontrivial) further benefit
possible by taking network topology
into account

• But the largest contribution comes
from node-awareness

• Thanks to Paul Eller for these
results

Comparison with Process Mapping
• An alternative is to use a tool to change

the mapping of processes in
MPI_COMM_WORLD to processors

• 3D halo exchange on 1024 processes
and 64 nodes of Blue Waters

• Results are MB/s per process

• Used Cray pat_build and pat_report
tools, with
MPICH_RANK_REORDER_METHOD=3

• Columns are correct – default is better
than rank mapped

• Investigation showed rank mapped had few
intranode and many internode
communications

Rank Mapped Default
N World Nodecart World Nodecart

128 45 136 98 138
256 132 242 224 266
512 152 294 260 318

1024 205 487 489 616
2048 193 486 483 616
4096 185 483 477 606

16384 172 449 456 579
32768 168 442 461 580
65536 148 378 398 508

Conclusion
• Using only node information provides a simple, fast, and effective implementation of MPI_Cart_create

• All MPI implementations should do at least this

• Need a better MPI_Dims_create

• Future Work

• Implementation can be improved, e.g., add socket info (this work is in progress)

• Implementation can be extended to MPI_Dist_graph_create, but harder (MPI _Cart_create exploits implicit information about
location)

• Could (should?) use existing graph partitioners without worrying about network topology

• Best is the enemy of (the) good

• To allow the demand, desire, or insistence for perfection decreases the chances of obtaining a good or favorable result in the end.
(https://idioms.thefreedictionary.com/best+is+the+enemy+of+the+good)

• Fortune cookie (Sept 14, 2018): “Many receive advice, only the wise profit by it”

https://idioms.thefreedictionary.com/best+is+the+enemy+of+the+good

Thanks!

• This research is part of the Blue Waters sustained-petascale

computing project, which is supported by the National Science

Foundation (award number OCI 07–25070) and the state of Illinois.

• Rajeev Thakur for runs on Theta

• Torsten Hoefler and Timo Schneider for runs on the Piz Daint

• Reviewers for their careful reading and helpful suggestions

