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Parallelism is Everywhere

« And at all scales

« Students can begin working
with parallel systems early
« My son Chris ran on Jaguar at

ORNL, then the Top500 #1, after
his freshman year

* More recently, ran
on nearly 1.2M
cores (more than |
ever have!)

 And he also found
scalability bugs...
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~Training students to think precisely and

guantitatively about parallel computing
 Parallel programming is hard
* We need to be scientific about solving these problems

* We would all like parallel programming to be eaiser and more fun, but
to accomplish that, we need to focus on the real problems

 And we must set a good example for our students.

« What follows are some examples of fuzzy thinking that we, as a community,
must strive to improve

« We can do this by insisting that our students be rigorous and to follow the
scientific method

« We must remind each other to separate opinion from fact ...
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Quotes from "Enabling Technologies for Petaflops
Computing” (MIT Press 1995)

« “The software for the current generation of 100 GF machines is not
adequate to be scaled to a TF...”

« “The Petaflops computer is achievable at =~=~~~~ hln ~act wiith Fnchnalang
available in about 20 years [2014].” Except that software was

« (estimated clock speed in 2004 — 700MHz adequate not onIy for TeraFLOP

- “Software technology for MPP’s must ev pyt for PetaFLOP and almost
that is portable across a wide variety of certainly ExaFLOP

can the small but important MPP sector «
leverage the massive investment that is being applied to commercial software
for the business and commodity computer market.”

« “To address the inadequate state of software productivity, there is a need to
develop language systems able to integrate software components that use
different paradigms and language dialects.”
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Quotes from "Enabling Technologies for Petaflops
Computing” (MIT Press 1995)

« “The software for the current generation of 100 GF machines is not adequate
to be scaled to a TF..”

 “The Petaflops computer is achievable at reasonable cost with
technology available in about 20 years [2014].”

+ (estimated clock speed in 2004 — 700MH2)

« “Software technology for MPP’ s ; ' ot e
that is portable across a wide va This clock speed estimate was 2n

can the small but important MPP dead on target — IBM BG/L ran at t
leverage the massive investmen this speed, and this prediction was ware

for the business and commodity S ZHOT
- “To address the inadequate state based on quantitative projections ;.

develop language systems able t e
different paradigms and language alalects.

INNCSA
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What is Scalability?

s it
« Using all cores on a chip efficiently
» Using all nodes in a distributed memory system efficiently
« Using many virtual CPUs in "the cloud” efficiently (and what is “many”)
* Ability to handle larger data
« Ability to handle more users/requests
* Running faster than a single core/chip/node?

At least strong and weak scaling (when discussed together) are
usually interpreted as #1 or #2

* Preciseness in language is important!
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Scalability — What does it tell you?

« Should | use algorithm 1 or 1000000
algorithm 27 e Algorithm 1 /S

100000
e Algorithm 2 /
10000
1000 ////’,,;ﬂﬂﬁ::'--__...
100 A/////,
10

1

Speedup
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Processors
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Scalability — What does it tell you?

« Should | use algorithm 1 or 10000000
algorithm 27?

, _ 1000000 = Algorithm 1
* Here's the same data, only showing |
time instead of speedup 100000
10000

* Its time to solution that is important

o \
£ 1000
[= \

* You can always improve scalability

by: 100
» Decreasing per-core performance \
. . 10 \
« Using a more computationally \

intensive algorithm 1

100 Q000 1000000
0.1

Processors
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How should you evaluate speedup?

* When measured, you need to

« Understand the algorithm and options

« Some are not obvious — accurate n-
body force calculations can be done in
O(n), not O(n?) time; Broadcast of n
words takes O(n), not O(n log p)

« Evaluate implementation quality

» Can use simple quantitative
performance model

* For many apps, STREAM is
appropriate
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What Parameters Are Important?

« Raw rates (clock speed, FLOPS,

memory bus bandwidth) are rarely / Reflectons on the Wemory Wal
useful by themselves Bl

sam@csl.cornell.edu

| once saw a paper that claimed memory
bandwidth wasn’t a useful indicator of
performance
« What they were looking at was the memory
bus bandwidth — which was far higher than the

sustained memon;y I__\perl‘ormance seen by
applications or STREAM

« Memory bus bandwidth was useless, but
sustained bandwidth as measured by STREAM

was useful
« Complex interactions of latency,
bandwidth, instruction hazards, etc.
make simple comparisons suspect

« Students often latch onto the hype around
raw performance numbers.
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How do you compare two programming models?

 First — are you comparing programming models, programming systems, or
implementations of programming systems?

« Answer — Almost always implementations

» Implication — No paper should be accepted that claims to compare X to Y when
all it does is compare an implementation of X on Z to an implementation of Y on

Z
« Second — what conclusions can you draw from the comparison?

« Example (drawn from a real
vendor document)

 Intended message: use our  00Es0s We're Better than MPI!

non-standard method - its faster! 1 00E+08 |

= ' J/\.

» Actual message: We have no clue g 1008407 /f_MPI

how to implement MPI correctly 2 1.00E+06 — e
» Good Test Question: Why do | make this @ 1.00E+05

claim? 1.00E+04

1.E+00 1.E+02 1.E+04 1.E+06

Data Size
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A comparison of implementations

Collaborative Filtering (Weak scaling, 250 M edges/node)

—&— \MPI —-Combblas —e—Graphlab —&—Socialite -®—Giraph

Some MPI
implementation
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Reproducibility and significant digits

» A keystone of science is the reproducible experiment
 Part of this is measuring and reporting only what is reproducible

* There are many challenges in making experiments reproducible
« Complete description of the apparatus (e.g., system, compiler
version/options, source code, ...)
« But some are (relatively easy)
« Don’t report overly precise measurements
« Or, don’t use output from %e in your paper; even %.2e is often better
» Describe your test environment
» Make the code and data available
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What’s in a name?

* In science, rigor and precision are important

* Example:
* “Programming exascale systems requires moving beyond the BSP
programming model; we need to replace MPI with <some new thing>."
* What is wrong with this statement?
 “...exascale systems requires moving beyond BSP”
 This is a hypothesis. How would you test or demonstrate it?
» But there is a more subtle error...
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MPI is not a BSP system

 BSP = Bulk Synchronous Parallel
* Programmers like the BSP model, adopting it even when not necessary (see

FIB)
« Unlike most programming models, designed with a performance model to

encourage quantitative design in programs

 MPI makes it easy to emulate a BSP system
 Rich set of collectives, barriers, blocking operations

* MPI (even MPI-1) sufficient for dynamic adaptive programming

« The main issues are performance and “progress”

 Improving implementations and better HW support for integrated CPU/NIC
coordination more effective at supporting need

 (This is not to say that there aren’t issues — see Marc Snir’s talk: “MPI is too
High Level/MPI is too Low Level” at http://www.mcs.anl.gov/mpi-
symposium/slides/marc_snir_25yrsmpi.pdf )

Leslie G. Valiant, A bridging model for parallel computation, Communications of the ACM, Volume 33 Issue 8, Aug. 1990
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http://www.mcs.anl.gov/mpi-symposium/slides/marc_snir_25yrsmpi.pdf

Understand what you ask for

» Current I/O performance is often appallingly poor
« Even relative to what current systems can achieve
» Part of the problem is the I/O interface semantics

* Many applications need to rethink their approach to I/O
* Not sufficient to “fix” current I/O implementations

« HPC Centers have been complicit in causing this problem
» By asking users the wrong question
» By using their response as an excuse to keep doing the same thing
* What is that question that causes so much trouble?
* Do you want/need POSIX I/O?
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Just how bad Is current I/O performance?
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“A Multiplatform Study of I/O Behavior on Petascale Supercomputers,” Huong Luu,

. Marianne Winslett, William Gropp, Robert Ross, Philip Carns, Kevin Harms, Prabhat,

Suren Byna, and Yushu Yao, proceedings of HPDC’15.




One Example in Parallel I/O

Original code used a simple I/O strategy for reading input grid file
Typical science run was many hours (6-24). 1/O less than 10-20% of time
But debugging runs are a few seconds — after input loaded

Understanding the achievable performance, and using the appropriate 1/0 semantics (not
POSIX), gives more than 1000X speedup (MeshlO library of Ed Karrels)

Legacy I/O Times - 1M Grid Points on Vulcan
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What are some of the problems?

« POSIX I/O has a strong consistency model
« Extremely hard to cache effectively

» Applications need to transfer block-aligned and sized data to achieve
performance

« Complexity adds to fragility of file system, the major cause of failures on
large scale HPC systems

* Files as /O objects add metadata “choke points”
 Serialize operations, even with “independent” files

 Burst buffers will not fix these problems — must change the
semantics of the operations

INNCSA



Other communities have matched their data

systems to their needs

« “Big Data” file systems have very different consistency models and
metadata structures, designed for their application needs
 Why doesn’'t HPC?

* There have been some efforts, such as PVFS, but the requirement for POSIX has held
up progress

IYNCSA



Why is the question “wrong”?

» To almost all application developers, asking if they need POSIX I/O
means (to them)

* Do you need open/seek/read/write/close?

* And if they answer “no”, the implication is
« They will need to rewrite their application and reformat their files

« With this interpretation, no-one would ever answer “no” to “Do you
need POSIX I/O?”

« Questions to which only one answer is reasonable don'’t tell you anything

IYNCSA



— NO science application code needs POSIX
/O semantics

« Many are single reader or single writer
» Eventual consistency is fine

Some are disjoint reader or writer
» Eventual consistency is fine, but must handle non-block-aligned writes

Some applications use the file system as a simple data base
» Use a data base — we know how to make these fast and reliable

Some applications use the file system to implement interprocess mutex
* Use a mutex service — even MPI point-to-point

A few use the file system as a bulletin board
* Most likely better off using RDMA
* Only need release or eventual consistency

Correct Fortran codes do not require POSIX in any form

» Standard requires unique open, enabling correct and aggressive client and/or server-side
caching

MPI-10 would be better off without POSIX
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Where's the hope?

* | firmly believe that a rigorous, scientific approach is the only way to solve
the great challenges facing us in making better, more productive use of
parallel computing

* And look where it has gotten us already

« Computing power in a single system has increased one billion fold over my
career. Data capacity and networking bandwidths have seen similar increases

* We have been able to program these systems
» Often the real challenge is in single core or single node performance

* We can accelerate this progress by (training our students in) challenging
conventional wisdom and being rigorous in applying the scientific method
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Thanks!

* For funding from
» National Science Foundation
« Department of Energy
* ExxonMobil and JumpLabs
« State of lllinois

* My co-workers at Yale, Argonne, and lllinois
* My colleagues around the world
* My students

» And especially Ken Kennedy, for his contributions and for the example
he set as a scholar and gentleman

IYNCSA



