Thinking About Parallelism and Programming

William Gropp
wgropp.cs.illinois.edu

KNNCSA

Parallelism is Everywhere

« And at all scales

« Students can begin working
with parallel systems early
« My son Chris ran on Jaguar at

ORNL, then the Top500 #1, after
his freshman year

* More recently, ran
on nearly 1.2M
cores (more than |
ever have!)

 And he also found
scalability bugs...

1,200,000

1,000,000

800,000

600,000

400,000

200,000

Concurrent vCPUs in US East (Northern Virginia)

~Training students to think precisely and

guantitatively about parallel computing
 Parallel programming is hard
* We need to be scientific about solving these problems

* We would all like parallel programming to be eaiser and more fun, but
to accomplish that, we need to focus on the real problems

 And we must set a good example for our students.

« What follows are some examples of fuzzy thinking that we, as a community,
must strive to improve

« We can do this by insisting that our students be rigorous and to follow the
scientific method

« We must remind each other to separate opinion from fact ...

IYNCSA

Quotes from "Enabling Technologies for Petaflops
Computing” (MIT Press 1995)

« “The software for the current generation of 100 GF machines is not
adequate to be scaled to a TF...”

« “The Petaflops computer is achievable at =~=~~~~ hln ~act wiith Fnchnalang
available in about 20 years [2014].” Except that software was

« (estimated clock speed in 2004 — 700MHz adequate not onIy for TeraFLOP

- “Software technology for MPP’s must ev pyt for PetaFLOP and almost
that is portable across a wide variety of certainly ExaFLOP

can the small but important MPP sector «
leverage the massive investment that is being applied to commercial software
for the business and commodity computer market.”

« “To address the inadequate state of software productivity, there is a need to
develop language systems able to integrate software components that use
different paradigms and language dialects.”

INNCSA

Quotes from "Enabling Technologies for Petaflops
Computing” (MIT Press 1995)

« “The software for the current generation of 100 GF machines is not adequate
to be scaled to a TF..”

 “The Petaflops computer is achievable at reasonable cost with
technology available in about 20 years [2014].”

+ (estimated clock speed in 2004 — 700MH2)

« “Software technology for MPP’ s ; ' ot e
that is portable across a wide va This clock speed estimate was 2n

can the small but important MPP dead on target — IBM BG/L ran at t
leverage the massive investmen this speed, and this prediction was ware

for the business and commodity S ZHOT
- “To address the inadequate state based on quantitative projections ;.

develop language systems able t e
different paradigms and language alalects.

INNCSA

~

What is Scalability?

s it
« Using all cores on a chip efficiently
» Using all nodes in a distributed memory system efficiently
« Using many virtual CPUs in "the cloud” efficiently (and what is “many”)
* Ability to handle larger data
« Ability to handle more users/requests
* Running faster than a single core/chip/node?

At least strong and weak scaling (when discussed together) are
usually interpreted as #1 or #2

* Preciseness in language is important!

IYNCSA

Scalability — What does it tell you?

« Should | use algorithm 1 or 1000000
algorithm 27 e Algorithm 1 /S

100000
e Algorithm 2 /
10000
1000 ////’,,;ﬂﬂﬁ::'--__...
100 A/////,
10

1

Speedup

1 100 10000 1000000
Processors

IYNCSA

Scalability — What does it tell you?

« Should | use algorithm 1 or 10000000
algorithm 27?

, _ 1000000 = Algorithm 1
* Here's the same data, only showing |
time instead of speedup 100000
10000

* Its time to solution that is important

o \
£ 1000
[= \

* You can always improve scalability

by: 100
» Decreasing per-core performance \
. . 10 \
« Using a more computationally \

intensive algorithm 1

100 Q000 1000000
0.1

Processors

IYNCSA

How should you evaluate speedup?

* When measured, you need to

« Understand the algorithm and options

« Some are not obvious — accurate n-
body force calculations can be done in
O(n), not O(n?) time; Broadcast of n
words takes O(n), not O(n log p)

« Evaluate implementation quality

» Can use simple quantitative
performance model

* For many apps, STREAM is
appropriate

Hl Theoretical Peak Il Oper. Issue Peak
Hl Mem BW Peak [Observed

6000

5000
4000

3000
2000

1000 4

0
Power 4 (1.3 GHz) Pentium 4 Xeon (2.4 GHz)

W. K. Anderson, William D. Gropp, D. K.
Kaushik, D. E. Keyes, and B. F. Smith.
Achieving high sustained performance in
an unstructured mesh CFD application,
SC99 (Gordon Bell Prize)

INNCSA

What Parameters Are Important?

« Raw rates (clock speed, FLOPS,

memory bus bandwidth) are rarely / Reflectons on the Wemory Wal
useful by themselves Bl

sam@csl.cornell.edu

| once saw a paper that claimed memory
bandwidth wasn’t a useful indicator of
performance
« What they were looking at was the memory
bus bandwidth — which was far higher than the

sustained memon;y I__\perl‘ormance seen by
applications or STREAM

« Memory bus bandwidth was useless, but
sustained bandwidth as measured by STREAM

was useful
« Complex interactions of latency,
bandwidth, instruction hazards, etc.
make simple comparisons suspect

« Students often latch onto the hype around
raw performance numbers.

INNCSA

How do you compare two programming models?

 First — are you comparing programming models, programming systems, or
implementations of programming systems?

« Answer — Almost always implementations

» Implication — No paper should be accepted that claims to compare X to Y when
all it does is compare an implementation of X on Z to an implementation of Y on

Z
« Second — what conclusions can you draw from the comparison?

« Example (drawn from a real
vendor document)

 Intended message: use our 00Es0s We're Better than MPI!

non-standard method - its faster! 1 00E+08 |

= ' J/\.

» Actual message: We have no clue g 1008407 /f_MPI

how to implement MPI correctly 2 1.00E+06 — e
» Good Test Question: Why do | make this @ 1.00E+05

claim? 1.00E+04

1.E+00 1.E+02 1.E+04 1.E+06

Data Size

IYNCSA

A comparison of implementations

Collaborative Filtering (Weak scaling, 250 M edges/node)

—&— \MPI —-Combblas —e—Graphlab —&—Socialite -®—Giraph

Some MPI
implementation

8 1000 a — .

g /

{ o

e ——

g 10 o —o— —o— —o—

& 1

()]

.g 1 2 4 8 16 32 64

Number of nodes

Reproducibility and significant digits

» A keystone of science is the reproducible experiment
 Part of this is measuring and reporting only what is reproducible

* There are many challenges in making experiments reproducible
« Complete description of the apparatus (e.g., system, compiler
version/options, source code, ...)
« But some are (relatively easy)
« Don’t report overly precise measurements
« Or, don’t use output from %e in your paper; even %.2e is often better
» Describe your test environment
» Make the code and data available

INNCSA

What’s in a name?

* In science, rigor and precision are important

* Example:
* “Programming exascale systems requires moving beyond the BSP
programming model; we need to replace MPI with <some new thing>."
* What is wrong with this statement?
 “...exascale systems requires moving beyond BSP”
 This is a hypothesis. How would you test or demonstrate it?
» But there is a more subtle error...

IYNCSA

MPI is not a BSP system

 BSP = Bulk Synchronous Parallel
* Programmers like the BSP model, adopting it even when not necessary (see

FIB)
« Unlike most programming models, designed with a performance model to

encourage quantitative design in programs

 MPI makes it easy to emulate a BSP system
 Rich set of collectives, barriers, blocking operations

* MPI (even MPI-1) sufficient for dynamic adaptive programming

« The main issues are performance and “progress”

 Improving implementations and better HW support for integrated CPU/NIC
coordination more effective at supporting need

 (This is not to say that there aren’t issues — see Marc Snir’s talk: “MPI is too
High Level/MPI is too Low Level” at http://www.mcs.anl.gov/mpi-
symposium/slides/marc_snir_25yrsmpi.pdf)

Leslie G. Valiant, A bridging model for parallel computation, Communications of the ACM, Volume 33 Issue 8, Aug. 1990

INNCSA

http://www.mcs.anl.gov/mpi-symposium/slides/marc_snir_25yrsmpi.pdf

Understand what you ask for

» Current I/O performance is often appallingly poor
« Even relative to what current systems can achieve
» Part of the problem is the I/O interface semantics

* Many applications need to rethink their approach to I/O
* Not sufficient to “fix” current I/O implementations

« HPC Centers have been complicit in causing this problem
» By asking users the wrong question
» By using their response as an excuse to keep doing the same thing
* What is that question that causes so much trouble?
* Do you want/need POSIX I/O?

IYNCSA

Just how bad Is current I/O performance?

1 TB/s

1 GB/s

1 MB/s

/0 Throughput

1 KB/s

Application's Max I/O Throughput

25% 50% 75% 100%

Applications

Sustained
maximum 1/O
bandwidth

platform

== BlueWaters
== Edison

== |Nntrepid

== Mira

“A Multiplatform Study of I/O Behavior on Petascale Supercomputers,” Huong Luu,

. Marianne Winslett, William Gropp, Robert Ross, Philip Carns, Kevin Harms, Prabhat,

Suren Byna, and Yushu Yao, proceedings of HPDC’15.

One Example in Parallel I/O

Original code used a simple I/O strategy for reading input grid file
Typical science run was many hours (6-24). 1/O less than 10-20% of time
But debugging runs are a few seconds — after input loaded

Understanding the achievable performance, and using the appropriate 1/0 semantics (not
POSIX), gives more than 1000X speedup (MeshlO library of Ed Karrels)

Legacy I/O Times - 1M Grid Points on Vulcan

MPI /O Times - 1M Grid Points on Vulcan
5000 .
== erlc Rcs(a.n ? [Write Restart
[Write Solution i i
4500 |- n R @@ Write Solution
@ Read Solution R
. 8 - [Read Solution
I Read Grid Read Grid
2000 1 B Read Gii
7L
3500 -
6|
3000
3z St
‘E’ 2500 - z
= T
= E
=
2000 - 4
1500 | 4 3k
1000 2
500
1k
1 2 4 8 16 32 64 128 256 512 1024 2048 4096 0

Number of Processes 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Number of Processes

INNCSA

What are some of the problems?

« POSIX I/O has a strong consistency model
« Extremely hard to cache effectively

» Applications need to transfer block-aligned and sized data to achieve
performance

« Complexity adds to fragility of file system, the major cause of failures on
large scale HPC systems

* Files as /O objects add metadata “choke points”
 Serialize operations, even with “independent” files

 Burst buffers will not fix these problems — must change the
semantics of the operations

INNCSA

Other communities have matched their data

systems to their needs

« “Big Data” file systems have very different consistency models and
metadata structures, designed for their application needs
 Why doesn’'t HPC?

* There have been some efforts, such as PVFS, but the requirement for POSIX has held
up progress

IYNCSA

Why is the question “wrong”?

» To almost all application developers, asking if they need POSIX I/O
means (to them)

* Do you need open/seek/read/write/close?

* And if they answer “no”, the implication is
« They will need to rewrite their application and reformat their files

« With this interpretation, no-one would ever answer “no” to “Do you
need POSIX I/O?”

« Questions to which only one answer is reasonable don'’t tell you anything

IYNCSA

— NO science application code needs POSIX
/O semantics

« Many are single reader or single writer
» Eventual consistency is fine

Some are disjoint reader or writer
» Eventual consistency is fine, but must handle non-block-aligned writes

Some applications use the file system as a simple data base
» Use a data base — we know how to make these fast and reliable

Some applications use the file system to implement interprocess mutex
* Use a mutex service — even MPI point-to-point

A few use the file system as a bulletin board
* Most likely better off using RDMA
* Only need release or eventual consistency

Correct Fortran codes do not require POSIX in any form

» Standard requires unique open, enabling correct and aggressive client and/or server-side
caching

MPI-10 would be better off without POSIX

IYNCSA

Where's the hope?

* | firmly believe that a rigorous, scientific approach is the only way to solve
the great challenges facing us in making better, more productive use of
parallel computing

* And look where it has gotten us already

« Computing power in a single system has increased one billion fold over my
career. Data capacity and networking bandwidths have seen similar increases

* We have been able to program these systems
» Often the real challenge is in single core or single node performance

* We can accelerate this progress by (training our students in) challenging
conventional wisdom and being rigorous in applying the scientific method

IYNCSA

Thanks!

* For funding from
» National Science Foundation
« Department of Energy
* ExxonMobil and JumpLabs
« State of lllinois

* My co-workers at Yale, Argonne, and lllinois
* My colleagues around the world
* My students

» And especially Ken Kennedy, for his contributions and for the example
he set as a scholar and gentleman

IYNCSA

