
Challenges in Intranode and
Internode Programming for

HPC Systems
William Gropp

wgropp.cs.illinois.edu

Department of Computer Science
and

National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign

Towards Exascale Architectures

From “Abstract Machine
Models and Proxy
Architectures for
Exascale Computing
Rev 1.1,” J Ang et al

June 19, 2016 2

Figure 1: Core Group for Node

Figure 2: Basic Layout of a Node Sunway TaihuLight
• Heterogeneous

processors (MPE,
CPE)

• No data cache
• Tianhe2a has

some data cache

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity,
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache

6

Adapteva Epiphany-V
• 1024 RISC

processors
• 32x32 mesh
• Very high power

efficiency (70GF/W)

DOE Sierra
• Power 9 with 4 NVIDA

Volta GPU
• 4320 nodes
DOE Summit similar, but
• 6 NVIDIA GPUs/node
• 4608 nodes

Next Generation
System?

All Heterogeneous
Increasing
diversity in
accelerator

choices
NCSA Deep Learning System

16 nodes of Power 9 with 4
NVIDIA Volta GPU +

FPGA

• HPC Focus is typically on scale
• “How will we program a million (or a billion) cores?
• “What can use use to program these machines?”

• This talk focuses on some of the overlooked issues
• Performance models still (mostly) process to process and single core

• Node bottlenecks missed; impacts design from hardware to algorithms
• Dream of “Performance Portability” stands in the way of practical solutions

to “transportable” performance
• HPC I/O requirements impede performance, hurt reliability

• This talk does not talk about the need for different algorithms for
different architectures – there is no magic fix

• But some ideas and approaches here can help

Where are the real problems in using HPC Systems?

Programming Models and Systems
• In past, often a tight connection between the execution model and the

programming approach
• Fortran: FORmula TRANslation to von Neumann machine
• C: e.g., “register”, ++ operator match PDP-11 capabilities, needs

• Over time, execution models and reality changed but programming models
rarely reflected those changes

• Rely on compiler to “hide” those changes from the user – e.g., auto-vectorization for
SSE(n)

• Consequence: Mismatch between users’ expectation and system abilities.
• Can’t fully exploit system because user’s mental model of execution does not match real

hardware
• Decades of compiler research have shown this problem is extremely hard – can’t expect

system to do everything for you.

The Easy Part – Internode communication
• Often focus on the “scale” in Exascale as the hard part

• How to deal with a million or a billion processes?
• But really not too hard

• Many applications have large regions of regular parallelism
• Or nearly impossible

• If there isn’t enough independent parallelism

• Challenge is in handling definition and operation on distributed data
structures

• Many solutions for the internode programming piece
• The dominant one in technical computing is the Message Passing Interface

(MPI)

Modern MPI
• MPI is much more than message passing

• I prefer to call MPI a programming system rather than a programming model
• Because it implements several programming models

• Major features of MPI include
• Rich message passing, with nonblocking, thread safe, and persistent versions
• Rich collective communication methods
• Full-featured one-sided operations

• Many new capabilities over MPI-2
• Include remote atomic update

• Portable access to shared memory on nodes
• Process-based alternative to sharing via threads
• (Relatively) precise semantics

• Effective parallel I/O that is not restricted by POSIX semantics
• But see implementation issues …

• Perhaps most important
• Designed to support “programming in the large” – creation of libraries and tools

• MPI continues to evolve – MPI “next” Draft released at SC in Dallas last
November

Applications Still Mostly MPI-Everywhere
• “the larger jobs (> 4096 nodes) mostly use message passing with

no threading.” – Blue Waters Workload study,
https://arxiv.org/ftp/arxiv/papers/1703/1703.00924.pdf

• Benefit of programmer-managed locality
• Memory performance nearly stagnant (will HBM save us?)
• Parallelism for performance implies locality must be managed effectively

• Benefit of a single programming system
• Often stated as desirable but with little evidence
• Common to mix Fortran, C, Python, etc.
• But…Interface between systems must work well, and often don’t

• E.g., for MPI+OpenMP, who manages the cores and how is that negotiated?
• Don’t forget the “+” in “MPI + X”!

https://arxiv.org/ftp/arxiv/papers/1703/1703.00924.pdf

MPI On Multicore Nodes
• MPI Everywhere (single core/single thread MPI processes) still common

• Easy to think about
• We have good performance models (or do we?)

• In reality, there are issues
• Memory per core declining

• Need to avoid large regions for data copies, e.g., halo cells
• MPI implementations could share internal table, data structures

• May only be important for extreme scale systems
• MPI Everywhere implicitly assume uniform communication cost model

• Limits algorithms explored, communication optimizations used
• Even here, there is much to do for

• Algorithm designers
• Application implementers
• MPI implementation developers

• One example: Can we use the single core performance model for MPI?

Rates Per MPI Process
• Ping-pong between 2

nodes using 1-16
cores on each node

• Top is BG/Q, bottom
Cray XE6

• “Classic” model
predicts a single curve
– rates independent of
the number of
communicating
processes

B
an

dw
id

th
B

an
dw

id
th

Why this Behavior?
• The T = s + r n model predicts the same performance independent

of the number of communicating processes
• What is going on?
• How should we model the time for communication?

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

A Slightly Better Model
• For k processes sending messages, the sustained rate is

• min(RNIC-NIC, k RCORE-NIC)
• Thus

• T = s + k n/min(RNIC-NIC, k RCORE-NIC)
• Note if RNIC-NIC is very large (very fast network), this reduces to

• T = s + k n/(k RCORE-NIC) = s + n/RCORE-NIC

• This model is approximate; additional terms needed to capture
effect of shared data paths in node, contention for shared
resources

• But this new term is by far the dominant one

Comparison on Cray XE6

Measured Data Max-Rate Model
Modeling MPI Communication Performance on SMP Nodes: Is it Time to Retire
the Ping Pong Test, W Gropp, L Olson, P Samfass, Proceedings of EuroMPI 16,

https://doi.org/10.1145/2966884.2966919

https://doi.org/10.1145/2966884.2966919

MPI Virtual Process Topologies
• Lets user describe some common communication patterns
• Promises

• Better performance (with “reorder” flag true)
• Convenience in describing communication (at least with Cartesian process

topologies)
• Reality

• “Reorder” for performance rarely implemented
• Few examples include NEC SX series and IBM BlueGene/L

• Challenge to implement in general
• Perfect mapping complex to achieve except in special cases

• And perfect is only WRT the abstraction, not the real system

• Rarely used in benchmarks/applications, so does not perform well,
so is rarely used in benchmarks/applications

Example Cartesian Process Mesh – Four Nodes

0 1

4 5

2 3

6 7

8 9

12 13

10 11

14 15

14

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Desired Typical Process Mapping

Can We Do Better?
• Hypothesis: A better process mapping within a node will provide

significant benefits
• Ignore the internode network topology

• Vendors have argued that their network is fast enough that process mapping isn’t
necessary

• They may be (almost) right – once data enters the network

• Idea for Cartesian Process Topologies
• Identify nodes (see MPI_Comm_split_type)
• Map processes within a node to minimize internode communication

• Trading intranode for internode communication
• Using Node Information to Implement MPI Cartesian Topologies, Gropp, William D.,

Proceedings of the 25th European MPI Users' Group Meeting, 18:1–18:9, 2018
https://dl.acm.org/citation.cfm?id=3236377

• Using Node and Socket Information to Implement MPI Cartesian Topologies, Parallel
Computing, 2019 https://doi.org/10.1016/j.parco.2019.01.001

https://dl.acm.org/citation.cfm?id=3236377
https://doi.org/10.1016/j.parco.2019.01.001

Comparing Halo Exchanges

0.00E+00	

2.00E+08	

4.00E+08	

6.00E+08	

8.00E+08	

1.00E+09	

1.20E+09	

100	 1000	 10000	 100000	

B/
s	p

er
	p
ro
ce
ss
	

Message	Size	

2D	Halo	Exchange	

Cart-16	

Cart-32	

Cart-64	

Ncart-16	

Ncart-32	

Ncart-64	
0.00E+00	

1.00E+08	

2.00E+08	

3.00E+08	

4.00E+08	

5.00E+08	

6.00E+08	

7.00E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	P
ro
ce
ss
	

Message	Size	

2D	Halo	Exchange	

Cart-32x32	

Cart-64x32	

Ncart-32x32	

Ncart-64x32	

0.00E+00	

1.00E+08	

2.00E+08	

3.00E+08	

4.00E+08	

5.00E+08	

6.00E+08	

7.00E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	p
ro
ce
ss
	

Message	Size	

3D	Halo	Exchange	

Cart-8	

Cart-16	

Ncart-8	

Ncart-16	

0.00E+00	
5.00E+07	
1.00E+08	
1.50E+08	
2.00E+08	
2.50E+08	
3.00E+08	
3.50E+08	
4.00E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	P
ro
ce
ss
	

Message	Size	

3D	Halo	Exchange	

Cart-16x8x8	

Cart-16x16x8	

Ncart-16x8x8	

Ncart-16x16x8	

0.00E+00	

5.00E+07	

1.00E+08	

1.50E+08	

2.00E+08	

2.50E+08	

3.00E+08	

3.50E+08	

4.00E+08	

4.50E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	p
ro
ce
ss
	

Message	Size	

3D	Halo	Exchange	

C-9x8x8	

C-12x12x8	

C-16x12x12	

C-18x16x16	

C-24x24x16	

C-32x24x24	

N-9x8x8	

N-12x12x8	

N-16x12x12	

N-18x16x16	

N-24x24x16	

N-32x24x24	

Blue Waters Theta Piz Daint

0.00E+00	

1.00E+08	

2.00E+08	

3.00E+08	

4.00E+08	

5.00E+08	

6.00E+08	

7.00E+08	

8.00E+08	

100	 1000	 10000	 100000	

B/
s	p

er
	p
ro
ce
ss
	

Message	Size	

2D	Halo	Exchange	

Cart-24	

Cart-48	

Cart-96	

Cart-144x128	

Ncart-24	

Ncart-48	

Ncart-96	

Ncart-144x128	

Dreams and Reality
• For codes that demand performance (and parallelism almost

always implies that performance is important enough to justify the
cost and complexity of parallelism), the dream is performance
portability

• The reality is that most codes require specialized code to achieve
high performance, even for non-parallel codes

• A typical refrain is “Let The Compiler Do It”
• This is the right answer …

• If only the compiler could do it
• We have lots of evidence that this problem is unsolved – consider one of

the most studied kernels – dense matrix-matrix multiply (DGEMM)
• And what about vectorization?

• Long history of tools and techniques to produce fast code for loops
• Vectorization, streams, etc., dating back nearly 40 years (Cray-1) or more

• Many tools for optimizing loops for both CPUs and GPUs
• Compiler (auto) vectorization, explicit programmer use of directives (e.g., OpenMP or

OpenACC), lower level expressions (e.g., CUDA, vector intrinsics)
• Is there a clear choice?

• Not for vectorizing compilers (e.g., see S. Maleki, Y. Gao, T. Wong,
M. Garzarán, and D. Padua, An Evaluation of Vectorizing Compilers.
PACT 2011)

• Probably not for the others
• OpenACC preliminary examples follow

• Vector tests part of baseenv; OpenACC and OpenMP vectorization
tests under development (and some OpenACC examples follow)

• Need to separate description of semantics and operations
from particular programming system choices

A Simple (?) Problem:
Generating Fast Code for Loops

28

27

6

4

34

ICC

XLCXLC

GCC

1
3

Not Vectorizable

Auto Vectorized

1

3

Vectorizable

Vectorizable but none of the
compilers auto vectorized21

7 18 5

Intel IBM

Loop Performance
range in GF

Single Core
Vectorized

OpenACC
multicore

OpenACC tesla
(loop)

OpenACC tesla
(kernel)

Single Precision 2.6-16.3 1.1-3.3 394-1420 1.6-1710
Double Precision 1.3-8.2 -- 320-826 1.4-731

Can We Pick One Approach?

• Test system node
• 2 x Power9 (20 cores each) with 4 NVIDIA Tesla V100 GPU; Only 1 GPU used in tests

• Caveats
• Only basic tuning performed (e.g., -O3, -fast)
• Defaults used (almost certainly not full # cores for OpenACC multicore)
• Data resident on GPU for all tests
• Only 6 simple vector loop tests
• Test time variations not included

• Take-aways
• No absolute winner (though explicit OpenACC for these loops is close for GPU – but poor for CPU)
• Can abstract memory domains
• There are common abstractions but no one system is perfect

• If we can’t have the dream, what do we really need?

Design Requirements
1. A clean version of the code for the developers. This is the baseline code.
2. The code should run in the absence of any tool, so that the developers are

comfortable that their code will run.
3. A clean way to provide extra semantic information.
4. Code must run with good performance on multiple platforms and architectures.
5. A performance expert must be able to provide additional, possibly target-specific,

information about optimizations.
6. The system must reuse the results of the autotuning step(s) whenever possible.
7. Changes to the baseline code should ensure that “stale” versions of the optimized

code are not used and preferably replaced by updated versions.
8. Hand-tuned optimizations should be allowed.
9. Using (as opposed to creating) the optimized code must not require installing the

code generation and autotuning frameworks.
10. The system should make it possible to gather performance data from a remote

system.

Design Implications
• Our system uses annotated code, written in C, C++, or Fortran, with high-level information that

marks regions of code for optimization (addresses 1 and 2).
• The annotations only cover high-level, platform- independent information (addresses 3).
• Platform and tool-dependent information (e.g., loop-unroll depth) is maintained in a separate

optimization file (addresses 5).
• We maintain a database of optimized code, organized by target platform and other parameters

(addresses 4 and 6).
• The database maintains a hash of the relevant parts of the code for each transformed section

(addresses 7).
• Hand-tuned versions of code may be inserted into the database (addresses 8 and 5).
• The system separates the steps of determining optimized code and populating the database

from extracting code from the database to replace labeled code regions in the baseline version
(addresses 9).

• The system provides some support for running tests on a remote system; especially important
when the target is a supercomputer (addresses 9 and 10).

• Allow hand-optimized version as the default code, with clean baseline in database as source
for transformations (addresses 2).

Locus
• Source code is annotated to define code regions
• Optimization file notation orchestrates the use of

the optimization tools on the code regions
defined

• Interface provides operations on the source
code to invoke optimizations through:

• Adding pragmas
• Adding labels
• Replacing code regions

• These operations are used by the interface to
plug-in optimization tools

• Most tools are source-to-source
• tools must understand output of previous tools

• Joint work with Thiago Teixeira and David
Padua, “Managing Code Transformations for
Better Performance Portability”, submitted to
IJHPCA, 2018

Se
lec

t o
ne

 po
int

an
d c

on
ve

rt

Conversion

Return

metric

Best sequence
of optimizations

foundSearch
Search Locus

program

Baseline
version

Optimization
space

Direct Locus
program

Optimized
version

Execute/
Assess

applyoperator

navierstokes

.locusdb-xyz

matvec-0-shapeA-1024.var

spmv-1.var

matmul-1-shapeA-1024.var

stencil-0.var

Optimization Process XYZ

Locus

Source Files

Code Region
Variants

Direct Locus
Program

Matrix Multiply Example
• #pragma @LOCUS loop=matmul

for(i=0; i<M; i++)
for(j=0; j<N; j++)

for(k=0; k<K; k++)
C[i][j] = beta*C[i][j] + alpha*A[i][k] * B[k][j];

dim=4096;
Search {
buildcmd = "make clean all";
runcmd = "./matmul";

}
CodeReg matmul {
RoseLocus.Interchange(order=[0,2,1]);
tileI = poweroftwo(2..dim);
tileK = poweroftwo(2..dim);
tileJ = poweroftwo(2..dim);
Pips.Tiling(loop="0", factor=[tileI, tileK, tileJ]);
tileI_2 = poweroftwo(2..tileI);
tileK_2 = poweroftwo(2..tileK);
tileJ_2 = poweroftwo(2..tileJ);
Pips.Tiling(loop="0.0.0.0",

factor=[tileI_2, tileK_2, tileJ_2]);
{
tileI_3 = poweroftwo(2..tileI_2);
tileK_3 = poweroftwo(2..tileK_2);
tileJ_3 = poweroftwo(2..tileJ_2);
Pips.Tiling(loop="0.0.0.0.0.0.0",

factor=[tileI_3, tileK_3, tileJ_3]);
} OR {
None;

}
}

Locus Generated Code
(for specific platform/size)

• #pragma @LOCUS loop=matmul
for(i_t = 0; i_t <= 7; i_t += 1)
for(k_t = 0; k_t <= 3; k_t += 1)
for(j_t = 0; j_t <= 1; j_t += 1)
for(i_t_t = 8 * i_t; i_t_t <= ((8 * i_t) + 7); i_t_t += 1)
for(k_t_t = 256 * k_t; k_t_t <= ((256 * k_t) + 255); k_t_t += 1)
for(j_t_t = 32 * j_t; j_t_t <= ((32 * j_t) + 31); j_t_t += 1)
for(i = 64 * i_t_t; i <= ((64 * i_t_t) + 63); i += 1)
for(k = 4 * k_t_t; k <= ((4 * k_t_t) + 3); k += 1)
for(j = 64 * j_t_t;j <= ((64 * j_t_t) + 63); j += 1)

C[i][j] = beta*C[i][j] + alpha*A[i][k]*B[k][j];

DGEMM by Matrix Size

0.00

0.50

1.00

1.50

2.00

2.50

2048 4096 8192

Sp
ee

du
p

(o
ve

r
XL

C
ba

se
)

Matrices shape (n*n)

DGEMM on IBM Power
XLC base

Locus+XLC 2lt

Locus+XLC 3lt

GCC base

Locus+GCC 2lt

Locus+GCC 3lt

0.00

50.00

100.00

150.00

200.00

250.00

2048 4096

Sp
ee

du
p

(o
ve

r
IC

C
ba

se
)

Matrices Shape (n*n)

DGEMM on Intel x86

ICC base

Locus+ICC 2lt

Locus+ICC 3lt

Intel MKL

• For most processors and regular (e.g., vectorizable) computations
• Memory bandwidth for a chip is much larger than needed by a single core
• Share of memory bandwidth for a core (with all cores accessing memory) is

much smaller than needed to avoid waiting on memory
• Performance tests on a single core can be very misleading

• Example follows
• Can use simple MPI tools to explore dependence on using one to all cores

• See baseenv package
• Ask this question when you review papers J

Tuning Must be in a Representative
Environment

Stencil Sweeps

0

1000

2000

3000

4000

5000

6000

7000

8000

1 proc /
socket

Locus 1 p
/ socket

1 proc /
core

Locus 1 p
/ core

2 proc /
core

Locus 2 p
/ core

4 proc /
core

Locus 4 p
/ core

Ag
gr

eg
at

ed
 M

st
en

cil
s/

se
c

3D Heat on IBM Power

0

100

200

300

400

500

600

700

1 proc /
socket

Locus 1 p /
socket

1 proc /
core

Locus 1 p /
core

2 proc /
core

Locus 2 p /
core

Ag
gr

eg
at

ed
 M

st
en

cil
s/

se
c

3D Heat on Intel x86

void heat3d(double A[2][N+2][N+2][N+2]) {
int i, j, t, k;
#pragma @LOCUS loop=heat3d
for(t = 0; t < T-1; t++) {
for(i = 1; i < N+1; i++) {
for(j = 1; j < N+1; j++) {
for (k = 1; k < N+1; k++) {
A[(t+1)%2][i][j][k] = 0.125 * (A[t%2][i+1][j][k] -
2.0 * A[t%2][i][j][k] + A[t%2][i-1][j][k]) + 0.125 * (A[t%2][i][j+1][k]
- 2.0 * A[t%2][i][j][k] + A[t%2][i][j-1][k]) + 0.125 * (A[t%2][i][j][k-
1] - 2.0 * A[t%2][i][j][k] + A[t%2][i][j][k+1]) + A[t%2][i][j][k]; } } } }
}

Often Overlooked – IO Performance Often Terrible
• Applications just assume I/O is

awful and can’t be fixed
• Even simple patterns not handled

well
• Example: read or write a submesh

of an N-dim mesh at an arbitrary
offset in file

• Needed to read input mesh in
PlasComCM. Total I/O time less
than 10% for long science runs
(that is < 15 hours)

• But long init phase makes debugging,
development hard

• Meshio library built to match
application needs

• Replaces many lines in app with a
single collective I/O call

• Meshio
https://github.com/oshkosher/meshio

• Work of Ed Karrels

Original Meshio Speedup

PlasComCM 4500 1 4500

MILC 750 15.6 48

https://github.com/oshkosher/meshio

Just how bad Is current I/O performance?
Sustained
maximum I/O
bandwidth

“A Multiplatform Study of I/O Behavior on Petascale Supercomputers,” Huong Luu,
Marianne Winslett, William Gropp, Robert Ross, Philip Carns, Kevin Harms, Prabhat,
Suren Byna, and Yushu Yao, proceedings of HPDC’15.

1000X

What Are Some of the Problems?
• POSIX I/O has a strong and required consistency model

• Hard to cache effectively
• Applications need to transfer block-aligned and sized data to achieve performance
• Complexity adds to fragility of file system, the major cause of failures on large scale HPC systems

• Files as I/O objects add metadata “choke points”
• Serialize operations, even with “independent” files
• Do you know about O_NOATIME ?

• Burst buffers will not fix these problems – must change the semantics of the operations
• Typical approach is to falsely claim POSIX while violating POSIX semantics, leading some applications to fail

• “Big Data” file systems have very different consistency models and metadata structures,
designed for their application needs

• Why doesn’t HPC?
• There have been some efforts, such as PVFS, but the requirement for POSIX has held up progress

• Real problem for HPC – user’s “execution model” for I/O far from reality

No Science Application Code Needs POSIX I/O
(precisely, no app need POSIX consistency semantics)
• Many are single reader or single

writer
• Eventual consistency is fine

• Some are disjoint reader or writer
• Eventual consistency is fine, but must

correctly handle non-block-aligned writes

• Some applications use the file system
as a simple data base

• Use a data base – we know how to make
these fast and reliable

• Some applications use the file system
to implement interprocess mutex

• Use a mutex service – even MPI point-to-
point

• A few use the file system as a
bulletin board

• May be better off using RDMA (available
in MPI)

• Only need release or eventual
consistency

• Correct Fortran codes do not require
POSIX (in any form)

• Standard requires unique open,
enabling correct and aggressive client
and/or server-side caching

• MPI-IO would be better off without
POSIX (in any form)

• Does not and never has required POSIX

Summary
• Challenges for HPC programming are not just in scale

• Need to achieve extreme power and cost efficiencies puts large demands on the
effectiveness of single core (whatever that means) and single node performance

• MPI remains the most viable internode programming system
• Supports a multiple parallel programming models, including one-sided and shared

memory
• Contains features for “programming in the large” (tools, libraries, frameworks) that

make it particularly appropriate for the internode programming system
• Intranode programming for performance still an unsolved problem

• Lots of possibilities, but adoption remains a problem
• That points to unsolved problems, particularly in integration with large, multilingual codes

• Composition of tools (rather than a single does-everything compiler) a promising
approach

• Parallel I/O increasingly important
• But HPC centers need to change their approach and embrace the “big data” view

Thanks!
• Philipp Samfass, Ed Karrels, Amanda Bienz, Paul Eller, Thiago Teixeira
• Luke Olson, David Padua
• Rajeev Thakur for runs on Theta
• Torsten Hoefler and Timo Schneider for runs on Piz Daint

• Department of Energy, National Nuclear Security Administration, under Award Number
DE-NA0002374

• National Science Foundation Major Research Instrumentation program, grant
#1725729,

• ExxonMobil Upstream Research
• Blue Waters Sustained Petascale Project, supported by the National Science

Foundation (award number OCI 07–25070) and the state of Illinois.
• Argonne Leadership Computing Facility

