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Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache
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• HPC Focus is typically on scale
• “How will we program a million (or a billion) cores?
• “What can use use to program these machines?”

• This talk focuses on some of the overlooked issues
• Performance models still (mostly) process to process and single core

• Node bottlenecks missed; impacts design from hardware to algorithms
• Dream of “Performance Portability” stands in the way of practical solutions 

to “transportable” performance
• HPC I/O requirements impede performance, hurt reliability

• This talk does not talk about the need for different algorithms for 
different architectures – there is no magic fix

• But some ideas and approaches here can help

Where are the real problems in using HPC Systems?



Programming Models and Systems
• In past, often a tight connection between the execution model and the 

programming approach
• Fortran: FORmula TRANslation to von Neumann machine
• C: e.g., “register”, ++ operator match PDP-11 capabilities, needs

• Over time, execution models and reality changed but programming models 
rarely reflected those changes

• Rely on compiler to “hide” those changes from the user – e.g., auto-vectorization for 
SSE(n)

• Consequence: Mismatch between users’ expectation and system abilities.
• Can’t fully exploit system because user’s mental model of execution does not match real 

hardware
• Decades of compiler research have shown this problem is extremely hard – can’t expect 

system to do everything for you.



The Easy Part – Internode communication
• Often focus on the “scale” in Exascale as the hard part

• How to deal with a million or a billion processes?
• But really not too hard

• Many applications have large regions of regular parallelism
• Or nearly impossible

• If there isn’t enough independent parallelism

• Challenge is in handling definition and operation on distributed data 
structures

• Many solutions for the internode programming piece
• The dominant one in technical computing is the Message Passing Interface 

(MPI)



Modern MPI
• MPI is much more than message passing

• I prefer to call MPI a programming system rather than a programming model
• Because it implements several programming models

• Major features of MPI include
• Rich message passing, with nonblocking, thread safe, and persistent versions
• Rich collective communication methods
• Full-featured one-sided operations

• Many new capabilities over MPI-2
• Include remote atomic update

• Portable access to shared memory on nodes
• Process-based alternative to sharing via threads
• (Relatively) precise semantics

• Effective parallel I/O that is not restricted by POSIX semantics
• But see implementation issues …

• Perhaps most important
• Designed to support “programming in the large” – creation of libraries and tools

• MPI continues to evolve – MPI “next” Draft released at SC in Dallas last 
November



Applications Still Mostly MPI-Everywhere
• “the larger jobs (> 4096 nodes) mostly use message passing with 

no threading.” – Blue Waters Workload study, 
https://arxiv.org/ftp/arxiv/papers/1703/1703.00924.pdf

• Benefit of programmer-managed locality
• Memory performance nearly stagnant (will HBM save us?)
• Parallelism for performance implies locality must be managed effectively

• Benefit of a single programming system
• Often stated as desirable but with little evidence
• Common to mix Fortran, C, Python, etc.
• But…Interface between systems must work well, and often don’t

• E.g., for MPI+OpenMP, who manages the cores and how is that negotiated?
• Don’t forget the “+” in “MPI + X”!

https://arxiv.org/ftp/arxiv/papers/1703/1703.00924.pdf


MPI On Multicore Nodes
• MPI Everywhere (single core/single thread MPI processes) still common

• Easy to think about
• We have good performance models (or do we?)

• In reality, there are issues
• Memory per core declining

• Need to avoid large regions for data copies, e.g., halo cells
• MPI implementations could share internal table, data structures

• May only be important for extreme scale systems
• MPI Everywhere implicitly assume uniform communication cost model

• Limits algorithms explored, communication optimizations used
• Even here, there is much to do for

• Algorithm designers
• Application implementers
• MPI implementation developers

• One example: Can we use the single core performance model for MPI?
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Why this Behavior?
• The T = s + r n model predicts the same performance independent 

of the number of communicating processes
• What is going on?
• How should we model the time for communication?
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A Slightly Better Model
• For k processes sending messages, the sustained rate is

• min(RNIC-NIC, k RCORE-NIC)
• Thus

• T = s + k n/min(RNIC-NIC, k RCORE-NIC)
• Note if RNIC-NIC is very large (very fast network), this reduces to

• T = s + k n/(k RCORE-NIC) = s + n/RCORE-NIC

• This model is approximate; additional terms needed to capture 
effect of shared data paths in node, contention for shared 
resources

• But this new term is by far the dominant one



Comparison on Cray XE6

Measured Data Max-Rate Model
Modeling MPI Communication Performance on SMP Nodes: Is it Time to Retire 
the Ping Pong Test, W Gropp, L Olson, P Samfass, Proceedings of EuroMPI 16, 

https://doi.org/10.1145/2966884.2966919

https://doi.org/10.1145/2966884.2966919


MPI Virtual Process Topologies
• Lets user describe some common communication patterns
• Promises

• Better performance (with “reorder” flag true)
• Convenience in describing communication (at least with Cartesian process 

topologies)
• Reality

• “Reorder” for performance rarely implemented
• Few examples include NEC SX series and IBM BlueGene/L

• Challenge to implement in general
• Perfect mapping complex to achieve except in special cases

• And perfect is only WRT the abstraction, not the real system

• Rarely used in benchmarks/applications, so does not perform well, 
so is rarely used in benchmarks/applications



Example Cartesian Process Mesh – Four Nodes
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Can We Do Better?
• Hypothesis: A better process mapping within a node will provide 

significant benefits
• Ignore the internode network topology

• Vendors have argued that their network is fast enough that process mapping isn’t 
necessary

• They may be (almost) right – once data enters the network

• Idea for Cartesian Process Topologies
• Identify nodes (see MPI_Comm_split_type)
• Map processes within a node to minimize internode communication

• Trading intranode for internode communication
• Using Node Information to Implement MPI Cartesian Topologies, Gropp, William D., 

Proceedings of the 25th European MPI Users' Group Meeting, 18:1–18:9, 2018 
https://dl.acm.org/citation.cfm?id=3236377

• Using Node and Socket Information to Implement MPI Cartesian Topologies, Parallel 
Computing, 2019 https://doi.org/10.1016/j.parco.2019.01.001

https://dl.acm.org/citation.cfm?id=3236377
https://doi.org/10.1016/j.parco.2019.01.001


Comparing Halo Exchanges
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Dreams and Reality
• For codes that demand performance (and parallelism almost 

always implies that performance is important enough to justify the 
cost and complexity of parallelism), the dream is performance 
portability

• The reality is that most codes require specialized code to achieve 
high performance, even for non-parallel codes

• A typical refrain is “Let The Compiler Do It”
• This is the right answer …

• If only the compiler could do it
• We have lots of evidence that this problem is unsolved – consider one of 

the most studied kernels – dense matrix-matrix multiply (DGEMM)
• And what about vectorization? 



• Long history of tools and techniques to produce fast code for loops
• Vectorization, streams, etc., dating back nearly 40 years (Cray-1) or more

• Many tools for optimizing loops for both CPUs and GPUs
• Compiler (auto) vectorization, explicit programmer use of directives (e.g., OpenMP or 

OpenACC), lower level expressions (e.g., CUDA, vector intrinsics)
• Is there a clear choice?

• Not for vectorizing compilers (e.g., see S. Maleki, Y. Gao, T. Wong, 
M. Garzarán, and D. Padua, An Evaluation of Vectorizing Compilers.
PACT 2011)

• Probably not for the others
• OpenACC preliminary examples follow

• Vector tests part of baseenv; OpenACC and OpenMP vectorization
tests under development (and some OpenACC examples follow)

• Need to separate description of semantics and operations
from particular programming system choices 

A Simple (?) Problem:
Generating Fast Code for Loops
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Loop Performance 
range in GF

Single Core 
Vectorized

OpenACC 
multicore

OpenACC tesla 
(loop)

OpenACC tesla 
(kernel)

Single Precision 2.6-16.3 1.1-3.3 394-1420 1.6-1710
Double Precision 1.3-8.2 -- 320-826 1.4-731

Can We Pick One Approach?

• Test system node
• 2 x Power9 (20 cores each) with 4 NVIDIA Tesla V100 GPU; Only 1 GPU used in tests

• Caveats
• Only basic tuning performed (e.g., -O3, -fast)
• Defaults used (almost certainly not full # cores for OpenACC multicore)
• Data resident on GPU for all tests
• Only 6 simple vector loop tests
• Test time variations not included

• Take-aways
• No absolute winner (though explicit OpenACC for these loops is close for GPU – but poor for CPU)
• Can abstract memory domains
• There are common abstractions but no one system is perfect

• If we can’t have the dream, what do we really need?



Design Requirements
1. A clean version of the code for the developers. This is the baseline code. 
2. The code should run in the absence of any tool, so that the developers are 

comfortable that their code will run. 
3. A clean way to provide extra semantic information. 
4. Code must run with good performance on multiple platforms and architectures. 
5. A performance expert must be able to provide additional, possibly target-specific, 

information about optimizations. 
6. The system must reuse the results of the autotuning step(s) whenever possible. 
7. Changes to the baseline code should ensure that “stale” versions of the optimized 

code are not used and preferably replaced by updated versions. 
8. Hand-tuned optimizations should be allowed.
9. Using (as opposed to creating) the optimized code must not require installing the 

code generation and autotuning frameworks.
10. The system should make it possible to gather performance data from a remote 

system. 



Design Implications
• Our system uses annotated code, written in C, C++, or Fortran, with high-level information that 

marks regions of code for optimization (addresses 1 and 2). 
• The annotations only cover high-level, platform- independent information (addresses 3). 
• Platform and tool-dependent information (e.g., loop-unroll depth) is maintained in a separate 

optimization file (addresses 5). 
• We maintain a database of optimized code, organized by target platform and other parameters 

(addresses 4 and 6). 
• The database maintains a hash of the relevant parts of the code for each transformed section 

(addresses 7). 
• Hand-tuned versions of code may be inserted into the database (addresses 8 and 5). 
• The system separates the steps of determining optimized code and populating the database 

from extracting code from the database to replace labeled code regions in the baseline version 
(addresses 9).

• The system provides some support for running tests on a remote system; especially important 
when the target is a supercomputer (addresses 9 and 10). 

• Allow hand-optimized version as the default code, with clean baseline in database as source 
for transformations (addresses 2).



Locus
• Source code is annotated to define code regions
• Optimization file notation orchestrates the use of 

the optimization tools on the code regions 
defined

• Interface provides operations on the source 
code to invoke optimizations through:

• Adding pragmas
• Adding labels
• Replacing code regions

• These operations are used by the interface to 
plug-in optimization tools

• Most tools are source-to-source
• tools must understand output of previous tools

• Joint work with Thiago Teixeira and David 
Padua, “Managing Code Transformations for 
Better Performance Portability”, submitted to 
IJHPCA, 2018
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Matrix Multiply Example
• #pragma @LOCUS loop=matmul

for(i=0; i<M; i++)
for(j=0; j<N; j++) 

for(k=0; k<K; k++)
C[i][j] = beta*C[i][j] + alpha*A[i][k] * B[k][j];

dim=4096;
Search {
buildcmd = "make clean all";
runcmd = "./matmul";

}
CodeReg matmul {
RoseLocus.Interchange(order=[0,2,1]);
tileI = poweroftwo(2..dim);
tileK = poweroftwo(2..dim);
tileJ = poweroftwo(2..dim);
Pips.Tiling(loop="0", factor=[tileI, tileK, tileJ]);
tileI_2 = poweroftwo(2..tileI);
tileK_2 = poweroftwo(2..tileK);
tileJ_2 = poweroftwo(2..tileJ);
Pips.Tiling(loop="0.0.0.0",

factor=[tileI_2, tileK_2, tileJ_2]);
{
tileI_3 = poweroftwo(2..tileI_2);
tileK_3 = poweroftwo(2..tileK_2);
tileJ_3 = poweroftwo(2..tileJ_2);
Pips.Tiling(loop="0.0.0.0.0.0.0",

factor=[tileI_3, tileK_3, tileJ_3]);
} OR {
None;

}
}



Locus Generated Code
(for specific platform/size)

• #pragma @LOCUS loop=matmul
for(i_t = 0; i_t <= 7; i_t += 1)
for(k_t = 0; k_t <= 3; k_t += 1)
for(j_t = 0; j_t <= 1; j_t += 1)
for(i_t_t = 8 * i_t; i_t_t <= ((8 * i_t) + 7); i_t_t += 1) 
for(k_t_t = 256 * k_t; k_t_t <= ((256 * k_t) + 255); k_t_t += 1) 
for(j_t_t = 32 * j_t; j_t_t <= ((32 * j_t) + 31); j_t_t += 1)
for(i = 64 * i_t_t; i <= ((64 * i_t_t) + 63); i += 1)
for(k = 4 * k_t_t; k <= ((4 * k_t_t) + 3); k += 1)
for(j = 64 * j_t_t;j <= ((64 * j_t_t) + 63); j += 1)

C[i][j] = beta*C[i][j] + alpha*A[i][k]*B[k][j]; 



DGEMM by Matrix Size
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• For most processors and regular (e.g., vectorizable) computations
• Memory bandwidth for a chip is much larger than needed by a single core
• Share of memory bandwidth for a core (with all cores accessing memory) is 

much smaller than needed to avoid waiting on memory
• Performance tests on a single core can be very misleading

• Example follows
• Can use simple MPI tools to explore dependence on using one to all cores

• See baseenv package
• Ask this question when you review papers J

Tuning Must be in a Representative 
Environment



Stencil Sweeps
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3D Heat on Intel x86  

void heat3d(double A[2][N+2][N+2][N+2]) { 
int i, j, t, k; 
#pragma @LOCUS loop=heat3d 
for(t = 0; t < T-1; t++) { 
for(i = 1; i < N+1; i++) { 
for(j = 1; j < N+1; j++) { 
for (k = 1; k < N+1; k++) { 
A[(t+1)%2][i][j][k] = 0.125 * (A[t%2][i+1][j][k] -
2.0 * A[t%2][i][j][k] + A[t%2][i-1][j][k]) + 0.125 * (A[t%2][i][j+1][k] 
- 2.0 * A[t%2][i][j][k] + A[t%2][i][j-1][k]) + 0.125 * (A[t%2][i][j][k-
1] - 2.0 * A[t%2][i][j][k] + A[t%2][i][j][k+1]) + A[t%2][i][j][k]; } } } }
}



Often Overlooked – IO Performance Often Terrible
• Applications just assume I/O is 

awful and can’t be fixed
• Even simple patterns not handled 

well
• Example: read or write a submesh

of an N-dim mesh at an arbitrary 
offset in file

• Needed to read input mesh in 
PlasComCM.  Total I/O time less 
than 10% for long science runs 
(that is < 15 hours)

• But long init phase makes debugging, 
development hard

• Meshio library built to match 
application needs

• Replaces many lines in app with a 
single collective I/O call

• Meshio
https://github.com/oshkosher/meshio

• Work of Ed Karrels

Original Meshio Speedup

PlasComCM 4500 1 4500

MILC 750 15.6 48

https://github.com/oshkosher/meshio


Just how bad Is current I/O performance?
Sustained 
maximum I/O 
bandwidth

“A Multiplatform Study of I/O Behavior on Petascale Supercomputers,” Huong Luu, 
Marianne Winslett, William Gropp, Robert Ross, Philip Carns, Kevin Harms, Prabhat, 
Suren Byna, and Yushu Yao, proceedings of HPDC’15.

1000X



What Are Some of the Problems?
• POSIX I/O has a strong and required consistency model

• Hard to cache effectively
• Applications need to transfer block-aligned and sized data to achieve performance
• Complexity adds to fragility of file system, the major cause of failures on large scale HPC systems

• Files as I/O objects add metadata “choke points”
• Serialize operations, even with “independent” files
• Do you know about O_NOATIME ?

• Burst buffers will not fix these problems – must change the semantics of the operations
• Typical approach is to falsely claim POSIX while violating POSIX semantics, leading some applications to fail

• “Big Data” file systems have very different consistency models and metadata structures, 
designed for their application needs

• Why doesn’t HPC?
• There have been some efforts, such as PVFS, but the requirement for POSIX has held up progress

• Real problem for HPC – user’s “execution model” for I/O far from reality



No Science Application Code Needs POSIX I/O
(precisely, no app need POSIX consistency semantics)
• Many are single reader or single 

writer
• Eventual consistency is fine

• Some are disjoint reader or writer
• Eventual consistency is fine, but must 

correctly handle non-block-aligned writes

• Some applications use the file system 
as a simple data base

• Use a data base – we know how to make 
these fast and reliable

• Some applications use the file system 
to implement interprocess mutex

• Use a mutex service – even MPI point-to-
point

• A few use the file system as a 
bulletin board

• May be better off using RDMA (available 
in MPI)

• Only need release or eventual 
consistency

• Correct Fortran codes do not require 
POSIX (in any form)

• Standard requires unique open, 
enabling correct and aggressive client 
and/or server-side caching

• MPI-IO would be better off without 
POSIX (in any form)

• Does not and never has required POSIX



Summary
• Challenges for HPC programming are not just in scale

• Need to achieve extreme power and cost efficiencies puts large demands on the 
effectiveness of single core (whatever that means) and single node performance

• MPI remains the most viable internode programming system
• Supports a multiple parallel programming models, including one-sided and shared 

memory
• Contains features for “programming in the large” (tools, libraries, frameworks) that 

make it particularly appropriate for the internode programming system
• Intranode programming for performance still an unsolved problem

• Lots of possibilities, but adoption remains a problem
• That points to unsolved problems, particularly in integration with large, multilingual codes

• Composition of tools (rather than a single does-everything compiler) a promising 
approach

• Parallel I/O increasingly important
• But HPC centers need to change their approach and embrace the “big data” view
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