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Towards Exascale Architectures
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Where are the real problems in using HPC Systems?

« HPC Focus is typically on scale
* “How will we program a million (or a billion) cores?
« “What can use use to program these machines?”

* This talk focuses on some of the overlooked issues

« Performance models still (mostly) process to process and single core
* Node bottlenecks missed; impacts design from hardware to algorithms

« Dream of “Performance Portability” stands in the way of practical solutions
to “transportable” performance

« HPC 1/O requirements impede performance, hurt reliability

» This talk does noft talk about the need for different algorithms for
different architectures — there is no magic fix

« But some ideas and approaches here can help
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Programming Models and Systems

* |In past, often a tight connection between the execution model and the
programming approach
* Fortran: FORmula TRANSslation to von Neumann machine
« C: e.g., “register’, ++ operator match PDP-11 capabilities, needs

» Over time, execution models and reality changed but programming models
rarely reflected those changes

* Rely on compiler to “hide” those changes from the user — e.g., auto-vectorization for
SSE(n)
« Consequence: Mismatch between users’ expectation and system abilities.

« Can'’t fully exploit system because user’s mental model of execution does not match real
hardware

» Decades of compiler research have shown this problem is extremely hard — can’t expect
system to do everything for you.
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The Easy Part — Internode communication

» Often focus on the “scale” in Exascale as the hard part
* How to deal with a million or a billion processes?

 But really not too hard
* Many applications have large regions of regular parallelism
* Or nearly impossible
« If there isn’t enough independent parallelism
» Challenge is in handling definition and operation on distributed data
structures
« Many solutions for the internode programming piece

« The dominant one in technical computing is the Message Passing Interface
(MPI)

INNCSA




Modern MPI

 MPI is much more than message passing

* | prefer to call MPI a programming system rather than a programming model
« Because it implements several programming models

« Major features of MPI include
» Rich message passing, with nonblocking, thread safe, and persistent versions
* Rich collective communication methods
Full-featured one-sided operations
« Many new capabilities over MPI-2
* Include remote atomic update
Portable access to shared memory on nodes

» Process-based alternative to sharing via threads
+ (Relatively) precise semantics

Effective parallel I/O that is not restricted by POSIX semantics
» But see implementation issues ...
Perhaps most important
» Designed to support “programming in the large” — creation of libraries and tools

 MPI continues to evolve — MPI “next” Draft released at SC in Dallas last
November
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Applications Still Mostly MPI-Everywhere

* “the larger jobs (> 4096 nodes) mostly use message passing with
no threading.” — Blue Waters Workload study,
https://arxiv.org/ftp/arxiv/papers/1703/1703.00924 .pdf

» Benefit of programmer-managed locality
« Memory performance nearly stagnant (will HBM save us?)
« Parallelism for performance implies locality must be managed effectively

» Benefit of a single programming system
« Often stated as desirable but with little evidence
« Common to mix Fortran, C, Python, etc.

« But...Interface between systems must work well, and often don't
» E.g., for MPI+OpenMP, who manages the cores and how is that negotiated?
* Don'’t forget the “+” in “MPI + X"
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https://arxiv.org/ftp/arxiv/papers/1703/1703.00924.pdf

MPI| On Multicore Nodes

* MPI Everywhere (single core/single thread MPI processes) still common
 Easy to think about
* We have good performance models (or do we?)

* In reality, there are issues
* Memory per core declining
* Need to avoid large regions for data copies, e.g., halo cells

* MPI implementations could share internal table, data structures
« May only be important for extreme scale systems

* MPI Everywhere implicitly assume uniform communication cost model
 Limits algorithms explored, communication optimizations used

 Even here, there is much to do for
« Algorithm designers

 Application implementers
* MPI implementation developers

* One example: Can we use the single core performance model for MPI?
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Rates Per MPI| Process
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Why this Behavior?

* The T = s + r n model predicts the same performance independent
of the number of communicating processes
« What is going on?
* How should we model the time for communication?
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A Slightly Better Model

* For k processes sending messages, the sustained rate is
* min(Rnicnics K Reore-nic)

* Thus
* T=s+ k n/min(Ryic.nics K Reore-nic)

* Note if Ryic.nic IS very large (very fast network), this reduces to
* T=s+kn/(k Rcore-nic) = s + N/Rcore-Nic

» This model is approximate; additional terms needed to capture
effect of shared data paths in node, contention for shared
resources

 But this new term is by far the dominant one
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Comparison on Cray XEG
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MPI Virtual Process Topologies

 Lets user describe some common communication patterns

* Promises
 Better performance (with “reorder” flag true)
« Convenience in describing communication (at least with Cartesian process
topologies)
* Reality
« “Reorder” for performance rarely implemented
* Few examples include NEC SX series and IBM BlueGene/L

» Challenge to implement in general
» Perfect mapping complex to achieve except in special cases
» And perfect is only WRT the abstraction, not the real system

» Rarely used in benchmarks/applications, so does not perform well,
so is rarely used in benchmarks/applications
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Example Cartesian Process Mesh — Four Nodes
Typical Process Mapping
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Can We Do Better?

* Hypothesis: A better process mapping within a node will provide
significant benefits
* Ignore the internode network topology

* Vendors have argued that their network is fast enough that process mapping isn’t
necessary

» They may be (almost) right — once data enters the network

* |dea for Cartesian Process Topologies
* |dentify nodes (see MPI_Comm_split_type)
* Map processes within a node to minimize internode communication
» Trading intranode for internode communication

» Using Node Information to Implement MPI Cartesian Topologies, Gropp, William D.,
Proceedings of the 25th European MPI Users' Group Meeting, 18:1-18:9, 2018
https://dl.acm.org/citation.cfm?id=3236377

» Using Node and Socket Information to Implement MPI Cartesian Topologies, Parallel
Computing, 2019 https://doi.org/10.1016/].parco.2019.01.001
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Comparing HanExChanges
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Dreams and Reality

* For codes that demand performance (and parallelism almost
always implies that performance is important enough to justify the
cost and complexity of parallelism), the dream is performance
portability

* The reality is that most codes require specialized code to achieve
high performance, even for non-parallel codes

» A typical refrain is “Let The Compiler Do It
 This is the right answer ...
* If only the compiler could do it

* We have lots of evidence that this problem is unsolved — consider one of
the most studied kernels — dense matrix-matrix multiply (DGEMM)

 And what about vectorization?
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A Simple (?) Problem:
Generating Fast Code for Loops

 Long history of tools and techniques to produce fast code for loops
» Vectorization, streams, etc., dating back nearly 40 years (Cray-1) or more

« Many tools for optimizing loops for both CPUs and GPUs

« Compiler (auto) vectorization, explicit programmer use of directives (e.g., OpenMP or
OpenACC), lower level expressions (e.g., CUDA, vector intrinsics)

* |s there a clear choice?
Auto Vectorized

» Not for vectorizing compilers (e.g., see S. Maleki, Y. Gao, T. Wong, acc
M. Garzaran, and D. Padua, An Evaluation of Vectorizing Compilers.
PACT 2011)

* Probably not for the others

* OpenACC preliminary examples follow

» Vector tests part of baseenv; OpenACC and OpenMP vectorization
tests under development (and some OpenACC examples follow)

* Need to separate description of semantics and operations |
from particular programming system choices (1) eompters auovesonget
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Can We Pick One Approach?

Loop Performance | Single Core OpenACC OpenACC tesla OpenACC tesla
range in GF Vectorized multicore (loop) (kernel)
Single Precision 2.6-16.3 1.1-3.3 394-1420 1.6-1710

Double Precision 1.3-8.2 -- 320-826 1.4-731

+ Test system node
« 2 x Power9 (20 cores each) with 4 NVIDIA Tesla V100 GPU; Only 1 GPU used in tests
« Caveats
* Only basic tuning performed (e.g., -O3, -fast)
» Defaults used (almost certainly not full # cores for OpenACC multicore)
« Data resident on GPU for all tests
* Only 6 simple vector loop tests
» Test time variations not included
+ Take-aways
* No absolute winner (though explicit OpenACC for these loops is close for GPU — but poor for CPU)
« Can abstract memory domains
» There are common abstractions but no one system is perfect
» |If we can’t have the dream, what do we really need?




Design Requirements

A clean version of the code for the developers. This is the baseline code.

The code should run in the absence of any tool, so that the developers are
comfortable that their code will run.

A clean way to provide extra semantic information.
Code must run with good performance on multiple platforms and architectures.

A performance expert must be able to provide additional, possibly target-specific,
information about optimizations.

The system must reuse the results of the autotuning step(s) whenever possible.

Changes to the baseline code should ensure that “stale” versions of the optimized
code are not used and preferably replaced by updated versions.

Hand-tuned optimizations should be allowed.

Using (as opposed to creating) the optimized code must not require installing the
code generation and autotuning frameworks.

: Thet system should make it possible to gather performance data from a remote
system.

©0 NO a0 Db~
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o
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Design Implications

» Our system uses annotated code, written in C, C++, or Fortran, with high-level information that
marks regions of code for optimization (addresses 1 and 2).

« The annotations only cover high-level, platform- independent information (addresses 3).

 Platform and tool-dependent information (e.g., loop-unroll depth) is maintained in a separate
optimization file (addresses 5).

» \We maintain a database of optimized code, organized by target platform and other parameters
(addresses 4 and 6).

» The database maintains a hash of the relevant parts of the code for each transformed section
(addresses 7).

» Hand-tuned versions of code may be inserted into the database (addresses 8 and 5).

» The system separates the steps of determininP optimized code and populating the database
from extracting code from the database to replace labeled code regions in the baseline version

(addresses 9).

* The system provides some support for running tests on a remote system; especially important
when the target is a supercomputer (addresses 9 and 10).

 Allow hand-optimized version as the default code, with clean baseline in database as source
for transformations (addresses 2).
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Matrix Multiply Example

» #pragma @LOCUS loop=matmul o
fOI‘(i=O; |<M, i++) buildcmdf“make c'l'ean all";
f .=O_ .<N_ .++) }runcmd= Jmatmul";
OI'(J _, J , J . CodeReg matmul {
for(k—O, k< K, k++) RoselLocus.Interchange(order=[0,2,1]);

CIillj] = beta*C[il[j] + alpha*A[i][k] * BIKI[]; | tiex-powerofuotz.am

tiled = poweroftwo(2..dim);

tilel_2 = poweroftwo(2..tilel);

tileK_2 = poweroftwo(2..tileK);

tiled_2 = poweroftwo(2..tileJ);

Pips.Tiling(loop="0.0.0.0",
factor=[tilel_2, tileK_2, tiled_2]);

{

tilel_3 = poweroftwo(2..tilel_2);
tileK_3 = poweroftwo(2..tileK_2);
tiled_3 = poweroftwo(2..tiled _2);
Pips.Tiling(loop="0.0.0.0.0.0.0",
factor=[tilel_3, tileK_3, tileJ_3]);
}OR{
None;

}

}
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Locus Generated Code
(for specific platform/size)

* #pragma @LOCUS loop=matmul
for(i t=0;i t<=7;i t+=1)
for(k t=0;k t<=3;k t+=1)
for( t=0;j t<=1;j t+=1)
for(i t t=8*i ;i tt<=(8*i H)+7)i tt+=1)
for(k t t=256"*k t;k t t<=((256 *Kk t)+255);k t t+=1)
for( t t=32" t;jtt<=(B2*j t)+31);j t t+=1)
for(i=64*i t ti<=(64*i tt)+63),i+=1)
fork=4*k t ttk<=(4*k t t)+3);, k+=1)
for=64 *j t tjj<=((64*j t t)+63);,j+=1)

C[i](i] = beta*Cl[i][j] + alpha™Al[i][k]*B[k][];
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DGEMM by Matrix Size

DGEMM on IBM Power DGEMM on Intel x86
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Tuning Must be in a Representative

Environment
* For most processors and regular (e.g., vectorizable) computations
« Memory bandwidth for a chip is much larger than needed by a single core

« Share of memory bandwidth for a core (with all cores accessing memory) is
much smaller than needed to avoid waiting on memory

« Performance tests on a single core can be very misleading

« Example follows

« Can use simple MPI tools to explore dependence on using one to all cores
» See baseenv package

 Ask this question when you review papers ©
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Often Overlooked — IO Performance Often Terrible

» Applications just assume I/O is
awful and can'’t be fixed -MM
* Even simple patterns not handled  PlasComCMm 4500 4500

well MILC 750 156 48

 Example: read or write a submesh
of an N-dim mesh at an arbitrary
offset in file

* Needed to read input mesh in . .
PlasComCM. Total I/O time less single collective 1/O call

i * Meshio
than 10% for long science runs
(that is <015 hou?s) https://github.com/oshkosher/meshio

- But long init phase makes debugging, * Work of Ed Karrels
development hard

Meshio library built to match
application needs
* Replaces many lines in app with a



https://github.com/oshkosher/meshio

Just how bad Is current I/O performance?

1 1B/s

1000X

1 B/s

1 MB/s

/0 Throughput

1 KB/s

Application's Max I/O Throughput

25%, 50% 75% 100%

Applications

Sustained
maximum /O
bandwidth

platform

== BlueWaters
== Edison

== |ntrepid

== Mira

“A Multiplatform Study of I/O Behavior on Petascale Supercomputers,” Huong Luu,
Marianne Winslett, William Gropp, Robert Ross, Philip Carns, Kevin Harms, Prabhat,

. Suren Byna, and Yushu Yao, proceedings of HPDC’15. .



What Are Some of the Problems?

POSIX I/O has a strong and required consistency model
« Hard to cache effectively
» Applications need to transfer block-aligned and sized data to achieve performance
» Complexity adds to fragility of file system, the major cause of failures on large scale HPC systems

Files as I/O objects add metadata “choke points”
« Serialize operations, even with “independent” files
* Do you know about O_NOATIME ?

Burst buffers will not fix these problems — must change the semantics of the operations
» Typical approach is to falsely claim POSIX while violating POSIX semantics, leading some applications to fail

“Big Data” file systems have very different consistency models and metadata structures,
designed for their application needs

« Why doesn’t HPC?
» There have been some efforts, such as PVFS, but the requirement for POSIX has held up progress

Real problem for HPC — user’s “execution model” for I/O far from reality
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No Science Application Code Needs POSIX I/O

(precisely, no app need POSIX consistency semantics)

« Many are single reader or single
writer

« Eventual consistency is fine

« Some are disjoint reader or writer
« Eventual consistency is fine, but must
correctly handle non-block-aligned writes

« Some applications use the file system
as a simple data base

» Use a data base — we know how to make
these fast and reliable

« Some applications use the file system
to implement interprocess mutex

« Use a mutex service — even MPI point-to-
point

» Afew use the file system as a
bulletin board

* May be better off using RDMA (available
in MPI)

* Only need release or eventual
consistency

» Correct Fortran codes do not require
POSIX (in any form)

« Standard requires unique open,
enabling correct and aggressive client
and/or server-side caching

 MPI-10 would be better off without
POSIX (in any form)

* Does not and never has required POSIX
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Summary

» Challenges for HPC programming are not just in scale

* Need to achieve extreme power and cost efficiencies puts large demands on the
effectiveness of single core (whatever that means) and single node performance

* MPI remains the most viable internode programming system

« Supports a multiple parallel programming models, including one-sided and shared
memory

« Contains features for “programming in the large” (tools, libraries, frameworks) that
make it particularly appropriate for the internode programming system
* Intranode programming for performance still an unsolved problem

* Lots of possibilities, but adoption remains a problem
« That points to unsolved problems, particularly in integration with large, multilingual codes

« Composition of tools (rather than a single does-everything compiler) a promising
approach

 Parallel I/O increasingly important
« But HPC centers need to change their approach and embrace the “big data” view
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Thanks!

 Philipp Samfass, Ed Karrels, Amanda Bienz, Paul Eller, Thiago Teixeira
 Luke Olson, David Padua

* Rajeev Thakur for runs on Theta

« Torsten Hoefler and Timo Schneider for runs on Piz Daint

» Department of Energy, National Nuclear Security Administration, under Award Number
DE-NA0002374

» National Science Foundation Major Research Instrumentation program, grant
#1725729,

« ExxonMobil Upstream Research

« Blue Waters Sustained Petascale Project, supported by the National Science
Foundation (award number OCI 07-25070) and the state of lllinois.

« Argonne Leadership Computing Facility
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