
Living With Complexity:
Pragmatic Approaches to

Performance
William Gropp

wgropp.cs.Illinois.edu
With

Andreas Klöckner

Achieving High Performance is Increasingly
Difficult
• Systems are increasingly complex

• It was bad enough with caches and vector instructions, now add HBM and
GPUs – and not just 1 of each

• Multi GPU common; more than one socket/node.
• Even effective use of a single CPU core (which means using

appropriate vector and other instructions) is difficult
• Compiler vectorization requires high levels of optimization and still misses

optimization opportunities (45/151 in test last week)
• Best performance still requires specialized code, use of intrinsics, etc.

• Before we go any farther: Who is the audience for this talk?
• People needing most/all of the available performance
• Note that Dennard (Frequency) scaling ended ~ 2006, and since then,

performance has relied on parallelism at all levels and specialization

HPC Nodes are Increasingly Complex

DOE Sierra
• Power 9 with 4 NVIDA

Volta GPU
• 4320 nodes
DOE Summit similar, but
• 6 NVIDIA GPUs/node
• 4608 nodes

Fugaku
• Fujitsu A64FX (includes

Vector Extensions)
• 158,976 (+) nodes

DOE Frontier
• AMD with 4 AMD

GPU
• 100+ racks

NCSA Delta similar but
fewer racks J

DOE Aurora
• Intel SR with 6

Intel Ponte
Vecchio GPUs

• Being deployed,
>9K nodes

Hardware Implications For Programs
• Heterogeneity in many ways

• Processor – complex compute modes with scalar and vector
• Many (but not all) include separate accelerators (GPUs and others)
• Memory – Cache was bad enough; now HBM, other
• I/O – Burst buffers (often violating POSIX semantics), on node, central, remote

(cloud)
• For algorithm developer and programmer, the issue is Performance

Heterogeneity
• Whether the implementation uses more than one chip(let) isn’t the issue – can you

see performance impact of the different elements?
• Even vectorization counts as performance heterogeneity in this view

• Compilers still not great at vectorizing code, and often algorithmic changes needed to take
full advantage of vectorization (which specializes code, makes it hard to reason about
performance)

• Impacts algorithm choice and program realization

Algorithm Considerations
• Start with the choice of mathematical model/numerical method

• E.g., higher-order approximations for finite difference/element/volume trade
floating point operations, data motion, and data size

• Higher level choices can provide better locality
• E.g., nonlinear Schwarz, with “local” nonlinear solves

• Performance models needed to guide algorithm design/choice
• Model does not need to be precise – just good enough to guide
• This is fortunate, as highly accurate performance models are very difficult to

create and validate
• But they need to be accurate enough – and many models haven’t kept up with the

evolution of architectures
• One Example: Node-aware algorithms

• Performance model captures basic system hierarchy at node level
• Avoid redundant data copies; optimize data motion for HW characteristics
• Suggests a different approach for process topology mapping…

MPI On Multicore Nodes
• MPI Everywhere (single core/single thread MPI processes) still common

• Easy to think about
• We have good performance models (or do we?)

• In reality, there are issues
• Memory per core declining

• Need to avoid large regions for data copies, e.g., halo cells
• MPI implementations could share internal table, data structures

• May only be important for extreme scale systems
• MPI Everywhere implicitly assume uniform communication cost model

• Limits algorithms explored, communication optimizations used
• Even here, there is much to do for

• Algorithm designers
• Application implementers
• MPI implementation developers

• One example: Can we use the single core performance model for MPI?
• T = s + r n
• Widely used and effective for designing parallel algorithms
• Similar issues with logP, other models.

Rates Per MPI Process
• Ping-pong between 2

nodes using 1-16
cores on each node

• Top is BG/Q, bottom
Cray XE6

• “Classic” model
predicts a single curve
– rates independent of
the number of
communicating
processes

B
an

dw
id

th
B

an
dw

id
th

Rates Per MPI Process: 128 cores
• Increasing core count makes

the situation more complex
• Note roughly similar behavior

for first 32 processes
• 1 process / core
• 64 cores/socket

• As before, classic model
predicts a single curve – rate
depends only on length,
independent of number of
communicating processes

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1 10 100 1000 10000 100000

Rate for Process Pairs

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1 10 100 1000 10000 100000

Rate for Process Pairs (first 32 processes)

Why this Behavior?
• The T = s + r n model predicts the same performance independent

of the number of communicating processes
• What is going on?
• How should we model the time for communication?

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

A Slightly Better Model
• For k processes sending messages, the sustained rate is

• min(RNIC-NIC, k RCORE-NIC)
• Thus

• T = s + k n/min(RNIC-NIC, k RCORE-NIC)
• Note if RNIC-NIC is very large (very fast network), this reduces to

• T = s + k n/(k RCORE-NIC) = s + n/RCORE-NIC

• This model is approximate; additional terms needed to capture effect of
shared data paths in node, contention for shared resources, etc.

• But this new term is by far the dominant one
• This is the max-rate model (for performance limited by the maximum

available bandwidth)
• Logp model has a similar limitation and needs a similar modification

Comparison on Cray XE6

Measured Data Max-Rate Model
Modeling MPI Communication Performance on SMP Nodes: Is it Time to Retire
the Ping Pong Test, W Gropp, L Olson, P Samfass, Proceedings of EuroMPI 16,

https://doi.org/10.1145/2966884.2966919

https://doi.org/10.1145/2966884.2966919

Performance Model to Algorithm
• Performance measurements of halo

exchange show poor communication
performance

• Bandwidth per process low relative to “ping
pong” measurements

• Easy target – blame contention in the network
• But common default mapping of processes

to nodes leads to more off-node
communication

• The max rate model predicts reduced
performance once RNIC-NIC limit reached

• We can use this to create a better, and
simpler, implementation of MPI_Cart_create

0 1

4 5

2 3

6 7

8 9

1
2

1
3

1
0

1
1

1
4

1
5

0 1

2 3

4 5

6 7

8 9

1
0

1
1

1
2

1
3

1
4

1
5

D
es

ire
d

Ty
pi

ca
l P

ro
ce

ss
 M

ap
pi

ng

Building A Better MPI_Cart_create
• Hypothesis: A better process mapping within a node will provide

significant benefits
• Ignore the internode network topology

• Vendors have argued that their network is fast enough that process mapping isn’t
necessary

• They may be (almost) right – once data enters the network

• Idea for Cartesian Process Topologies
• Identify nodes (see MPI_Comm_split_type)
• Map processes within a node to minimize internode communication

• Trading intranode for internode communication
• Using Node Information to Implement MPI Cartesian Topologies, Gropp, William D.,

Proceedings of the 25th European MPI Users' Group Meeting, 18:1–18:9, 2018
https://dl.acm.org/citation.cfm?id=3236377

• Using Node and Socket Information to Implement MPI Cartesian Topologies, Parallel
Computing, 2019 https://doi.org/10.1016/j.parco.2019.01.001

https://dl.acm.org/citation.cfm?id=3236377
https://doi.org/10.1016/j.parco.2019.01.001

Increasing Core Count Makes Proper Mapping
More Important
• Cartesian mapping on Delta

• CPU nodes have 2 AMD Milan x 64
cores each (GPU nodes have 1 AMD
Milan and 4 A100 or A40 NVIDEA GPUs)

• Slingshot network (mostly – NIC update
coming)

• Performance in B/s (higher is better)
• Default mapping provides poor

performance
• Cart is MPI_Cart_create – also

MPI_COMM_WORLD
• Nodec uses node-awareness, inspired by

max-rate model
• Nodech extends to socket (3-level)

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

8.00E+08

0 10000 20000 30000 40000 50000 60000 70000

2D Mesh

cart rate nodec rate nodech rate

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

0 10000 20000 30000 40000 50000 60000 70000

3D Mesh

cart rate nodec rate nodech rate

Is Generating Fast Executables from Modern Code
a Solved Problem?
• There are some good successes – but still a challenge
• Features of successes

• Existing languages
• But perhaps directives/command line to fine tune semantics and choice of

optimizations
• Code transformations at various levels
• Separate out schedule from operation (forall, iterators)

• Even transpose is tricky
• As we’ll see in the next few slides
• Transpose involves only data motion; no floating-point order to respect
• Only a double loop (fewer options to consider)

A Simple Example: Dense Matrix Transpose

• do j=1,n
do i=1,n

b(i,j) = a(j,i)
enddo

enddo
• No temporal locality

(data used once)
• Spatial locality only if

(words/cacheline) * n
fits in cache

• Performance plummets
when matrices no longer
fit in cache

Perf limit based
on STREAM

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1000 2000 3000 4000 5000

M
B/

Se
c

Matrix Size

Data Transfer Rate in Dense Matric
Transpose

Power of Two
Matrix size

Blocking for Cache Helps
• do jj=1,n,stridej

do ii=1,n,stridei
do j=jj,min(n,jj+stridej-1)

do i=ii,min(n,ii+stridei-1)
b(i,j) = a(j,i)

• Good choices of stridei and stridej
can improve performance by a factor
of 2 or more

• But what are the choices of stridei
and stridej?

• AMD Milan, runs July 5, 2022

• For matrices too large for
cache (4000x4000 for these
tests), performance ranges
from 2.7 to 8.1 GB/sec

• Straightforward code (-O3)
provides about 3.1GB/sec

• Best blocked code about 2.6
times as fast

• Similar results (though at lower
sustained bandwidth) when
running on multiple cores
concurrently

• This is the more relevant case

Why Isn’t Generating High Performance Code
Really Solved?
• Assumes accurate performance model – but this is very

challenging in most cases
• Machine Learning will probably provide better ways to create/update

performance models, but may be difficult to use for the second part
• Assumes manageable space of options from which to choose – but

• Search space is huge
• Complexity of performance behavior (even if you had an accurate model)

makes it difficult to prune the search space

Code is the Enemy
• Code is a precise, executable description of an algorithm+data

structure, relative to a machine model
• Precision is good, but…
• High-level, abstract machine models may make it hard to achieve

performance
• How do we “solve” this (write code that gives performance) now?

• Ignore – hope for the best from the compiler and libraries
• Produce fast(ish) code for one system

• Might include optimization “tricks” – loop unrolling, special vector intrinsics, vendor-
specific GPU code, data structure choices (array of structures or structure of arrays or
arrays of structures of arrays or …)

• A true solution must deal with challenges at all levels
• Requires handling complexity at all levels – humans and tools typically

focus on just one part of the problem

The “upstream” Problem
• In a perfect world, clever ideas get pushed into compilers/tools, and

we build on them. The world is far from perfect
• Clever ideas are often also complex – hard to maintain, unexpected

interactions with other parts of the code
• This argues for a combination of

• Augmenting / extending existing languages and systems to build on
existing ecosystems

• Code transformation / writing tools to help compilers/systems
• Some of the difficult issues are in how to accomplish the

combination - the “+”

Building A Code EcoSystem
• As part of two DOE-funded projects (XPACC and CEESD), we’ve been developing

tools to help computational scientists focus on their science
• Locus/ICE

• Manage code transformations and search among the transformations for best performance
• Moya Just In Time Compilation

• Some things are only known at runtime; given that data, can produce much faster code
• Use static analysis performed at compile time to make runtime code generation faster, better
• “Moya-A JIT Compiler for HPC”, Programming and Performance Visualization Tools 2019

https://link.springer.com/chapter/10.1007/978-3-030-17872-7_4
• Note transpose results given earlier relied on compile-time choice of block size to help compiler

generate good code
• MIRGE

• Start at higher level representation of algorithm
• But do so by exploiting an existing system (Python in our case), not a new language

• Of course, there are many other efforts
• ATLAS, Spiral, FFTW, FEniCS, TCE, etc.

https://link.springer.com/chapter/10.1007/978-3-030-17872-7_4

Practical Low-level Performance

• Processors have very complex performance behavior; extremely
difficult to accurately predict performance or even order different
alternatives

• Without accurate, affordable performance model, no a priori decision can
be made on which code (transformations) to use

• In practice, often need to consider alternatives
• While compiler can do this in principle, rare and often impractical in

practice
• How can you harness the power of code transformation and

autotuning systems?

Locus
• Source code is annotated to define code

regions
• Optimization file notation orchestrates the use of

the optimization tools on the code regions
defined

• Interface provides operations on the source
code to invoke optimizations through:

• Adding pragmas
• Adding labels
• Replacing code regions

• These operations are used by the interface to
plug-in optimization tools

• Most tools are source-to-source
• tools must understand output of previous tools

• Joint work with Thiago Teixeira and David
Padua, “Managing Code Transformations for
Better Performance Portability”, IJHPCA, 2019
https://doi.org/10.1177%2F1094342019865606

6H
OHF
W�R
QH
�SR
LQW
�

DQ
G�F
RQ
YH
UW

&RQYHUVLRQ�

5HWXUQ

PHWULF

%HVW�VHTXHQFH�
RI�RSWLPL]DWLRQV

IRXQG6HDUFK
6HDUFK�/RFXV�

SURJUDP

%DVHOLQH�
YHUVLRQ

2SWLPL]DWLRQ
VSDFH

'LUHFW�/RFXV�
SURJUDP

2SWLPL]HG�
YHUVLRQ

([HFXWH�
$VVHVV

ETTP]STIVEXSV

REZMIVWXSOIW

�PSGYWHF�\]^

QEXZIG���WLETI%������ZEV

WTQZ���ZEV

QEXQYP���WLETI%������ZEV

WXIRGMP���ZEV

3TXMQM^EXMSR�4VSGIWW�<=>

/RFXV

7SYVGI�*MPIW

'SHI�6IKMSR�
:EVMERXW

(MVIGX�0SGYW�
4VSKVEQ

https://doi.org/10.1177%2F1094342019865606

Matrix Multiply Example
• #pragma @LOCUS loop=matmul

for(i=0; i<M; i++)
for(j=0; j<N; j++)

for(k=0; k<K; k++)
C[i][j] = beta*C[i][j] + alpha*A[i][k] * B[k][j];

dim=4096;
Search {
buildcmd = "make clean all";
runcmd = "./matmul";

}
CodeReg matmul {
RoseLocus.Interchange(order=[0,2,1]);
tileI = poweroftwo(2..dim);
tileK = poweroftwo(2..dim);
tileJ = poweroftwo(2..dim);
Pips.Tiling(loop="0", factor=[tileI, tileK, tileJ]);
tileI_2 = poweroftwo(2..tileI);
tileK_2 = poweroftwo(2..tileK);
tileJ_2 = poweroftwo(2..tileJ);
Pips.Tiling(loop="0.0.0.0",

factor=[tileI_2, tileK_2, tileJ_2]);
{
tileI_3 = poweroftwo(2..tileI_2);
tileK_3 = poweroftwo(2..tileK_2);
tileJ_3 = poweroftwo(2..tileJ_2);
Pips.Tiling(loop="0.0.0.0.0.0.0",

factor=[tileI_3, tileK_3, tileJ_3]);
} OR {
None;

}
}

Locus Generated Code
(for specific platform/size)

• #pragma @LOCUS loop=matmul
for(i_t = 0; i_t <= 7; i_t += 1)
for(k_t = 0; k_t <= 3; k_t += 1)
for(j_t = 0; j_t <= 1; j_t += 1)
for(i_t_t = 8 * i_t; i_t_t <= ((8 * i_t) + 7); i_t_t += 1)
for(k_t_t = 256 * k_t; k_t_t <= ((256 * k_t) + 255); k_t_t += 1)
for(j_t_t = 32 * j_t; j_t_t <= ((32 * j_t) + 31); j_t_t += 1)
for(i = 64 * i_t_t; i <= ((64 * i_t_t) + 63); i += 1)
for(k = 4 * k_t_t; k <= ((4 * k_t_t) + 3); k += 1)
for(j = 64 * j_t_t;j <= ((64 * j_t_t) + 63); j += 1)

C[i][j] = beta*C[i][j] + alpha*A[i][k]*B[k][j];

DGEMM by Matrix Size

0.00

0.50

1.00

1.50

2.00

2.50

2048 4096 8192

Sp
ee

du
p

(o
ve

r
XL

C
ba

se
)

Matrices shape (n*n)

DGEMM on IBM Power
XLC base

Locus+XLC 2lt

Locus+XLC 3lt

GCC base

Locus+GCC 2lt

Locus+GCC 3lt

0.00

50.00

100.00

150.00

200.00

250.00

2048 4096

Sp
ee

du
p

(o
ve

r
IC

C
ba

se
)

Matrices Shape (n*n)

DGEMM on Intel x86

ICC base

Locus+ICC 2lt

Locus+ICC 3lt

Intel MKL

• For most processors and regular (e.g., vectorizable) computations
• Memory bandwidth for a chip is much larger than needed by a single core
• Share of memory bandwidth for a core (with all cores accessing memory) is

much smaller than needed to avoid waiting on memory
• Performance tests on a single core can be very misleading

• Example follows
• Can use simple MPI tools to explore dependence on using one to all cores

• See baseenv package
• Ask this question when you review papers J

Tuning Must be in a Representative Environment

• Common operation for PDE solvers
• Structured are often “matrix free”
• Unstructured and structured mesh stencils have low ”computational intensity” –

number of floating-point operations per bytes moved
• Conventional wisdom is that cache blocking and similar optimizations

are ineffective
• For example, “Optimization and Performance Modeling of Stencil Computations

on Modern Microprocessors” argues this, and provides experimental data to
support it

• https://epubs.siam.org/doi/10.1137/070693199 (accepted 2007, published 2009)
• But the analysis and experiments are usually based on one core per

chip/socket
• And the number of cores has grown substantially since 2007
• What if every core is executing a stencil sweep?

Stencil Sweeps

https://epubs.siam.org/doi/10.1137/070693199

Stencil Sweeps

0

1000

2000

3000

4000

5000

6000

7000

8000

1 proc /
socket

Locus 1 p
/ socket

1 proc /
core

Locus 1 p
/ core

2 proc /
core

Locus 2 p
/ core

4 proc /
core

Locus 4 p
/ core

Ag
gr

eg
at

ed
 M

st
en

cil
s/

se
c

3D Heat on IBM Power

0

100

200

300

400

500

600

700

1 proc /
socket

Locus 1 p /
socket

1 proc /
core

Locus 1 p /
core

2 proc /
core

Locus 2 p /
core

Ag
gr

eg
at

ed
 M

st
en

cil
s/

se
c

3D Heat on Intel x86

void heat3d(double A[2][N+2][N+2][N+2]) {
int i, j, t, k;
#pragma @LOCUS loop=heat3d
for(t = 0; t < T-1; t++) {
for(i = 1; i < N+1; i++) {
for(j = 1; j < N+1; j++) {
for (k = 1; k < N+1; k++) {
A[(t+1)%2][i][j][k] = 0.125 * (A[t%2][i+1][j][k] -
2.0 * A[t%2][i][j][k] + A[t%2][i-1][j][k]) + 0.125 * (A[t%2][i][j+1][k]
- 2.0 * A[t%2][i][j][k] + A[t%2][i][j-1][k]) + 0.125 * (A[t%2][i][j][k-
1] - 2.0 * A[t%2][i][j][k] + A[t%2][i][j][k+1]) + A[t%2][i][j][k]; } } } }
}

A High Level Approach
• Start with Python

• High level language with strong software ecosystem
• Integrate with code transformation/generation tools to create high-

performance versions
• Alternative to creating a new Domain Specific Language
• Center for Exascale-Enabled Scramjet Design

• Ceesd.Illinois.edu
• Coupled hypersonic fluid flow with combustion and material interaction
• Target is DOE Exascale systems – nodes with multiple accelerators
• Changing nodes – IBM P9+NVIDIA to AMD+AMD (and Intel+Intel if ANL

included)

https://ceesd.illinois.edu/

MIRGE Overview

Early Performance Results
• Abstractions visible to app:

• numpy-like array, nested containers thereof
• Array op. indirection layer (use Jax, Pytato, Numpy, eager GPU)
• Metadata ("tags") describe arrays, axes in app. Terms

• Pipeline of intermediate representations
• Array DFG (“pytato”) via lazy eval, lowered to
• Imperative, polyhedral (“loopy”) represetnation, lowered to
• OpenCL (for execution)

• Transformations (currently)
• On Array DFG: Metadata prop., materialization, redundant exprs.
• On loop IR: Loop/kernel fusion, array contraction, tile and prefetch
• Driven by app-aware transform code using metadata

• Organizational unit for tile/prefetch: “Fused einsum”
• Numerical method is DG-FEM
• Performance measured on single Nvidia Titan V GPU
• Work of Kaushik Kulkarni and Andreas Klöckner

P1 P2 P3

0

250

500

750

1000

1250

1500

1750

2000

G
F
lO

ps
/s

PyOpenCL JAX Pytato Roofline

Compressible Navier Stokes

P1 P2 P3 P4

0

1000

2000

3000

4000

5000

6000

G
FL

O
P
s/

s

PyOpenCL JAX Pytato Roofline

Maxwell Equations

Summary and Challenges
• Achieving performance is hard

• Compilers, Libraries, and tools can help
• But complexity of real systems requires tuning, which implies flexibility in

code generation
• Relatively simple performance models can help answer “Is this as fast as it

should be?”
• Leverage existing systems: “build on the shoulders of giants”
• Build on software ecosystem to realize algorithms

• Need to consider high and low level needs – and address separately but
compatibly

• Need to embrace composition of programming systems, address
“+”

