Living With Complexity: Pragmatic Approaches to Performance

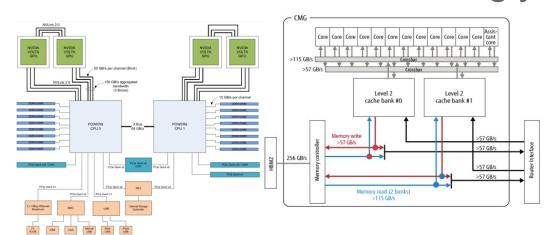
William Gropp wgropp.cs.Illinois.edu

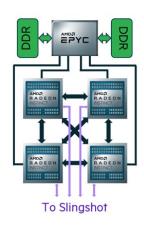
With Andreas Klöckner

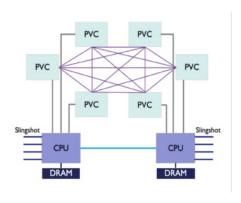
Achieving High Performance is Increasingly Difficult

- Systems are increasingly complex
 - It was bad enough with caches and vector instructions, now add HBM and GPUs – and not just 1 of each
 - Multi GPU common; more than one socket/node.
- Even effective use of a single CPU core (which means using appropriate vector and other instructions) is difficult
 - Compiler vectorization requires high levels of optimization and still misses optimization opportunities (45/151 in test last week)
 - Best performance still requires specialized code, use of intrinsics, etc.
- Before we go any farther: Who is the audience for this talk?
 - People needing most/all of the available performance
 - Note that Dennard (Frequency) scaling ended ~ 2006, and since then, performance has relied on parallelism at all levels and specialization

HPC Nodes are Increasingly Complex







DOE Sierra

- Power 9 with 4 NVIDA Volta GPU
- 4320 nodes

DOE Summit similar, but

- 6 NVIDIA GPUs/node
- 4608 nodes

Fugaku

- Fujitsu A64FX (includes Vector Extensions)
- 158,976 (+) nodes

DOE Frontier

- AMD with 4 AMD GPU
- 100+ racks

NCSA Delta similar but fewer racks ©

DOE Aurora

- Intel SR with 6
 Intel Ponte
 Vecchio GPUs
- Being deployed,>9K nodes

Hardware Implications For Programs

- Heterogeneity in many ways
 - Processor complex compute modes with scalar and vector
 - Many (but not all) include separate accelerators (GPUs and others)
 - Memory Cache was bad enough; now HBM, other
 - I/O Burst buffers (often violating POSIX semantics), on node, central, remote (cloud)
- For algorithm developer and programmer, the issue is *Performance Heterogeneity*
 - Whether the implementation uses more than one chip(let) isn't the issue can you see performance impact of the different elements?
 - Even vectorization counts as performance heterogeneity in this view
 - Compilers still not great at vectorizing code, and often algorithmic changes needed to take full advantage of vectorization (which specializes code, makes it hard to reason about performance)
- Impacts algorithm choice and program realization

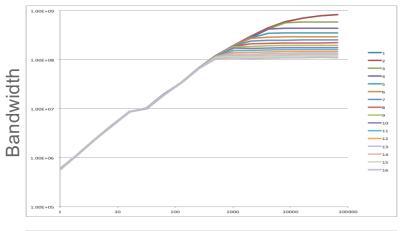
Algorithm Considerations

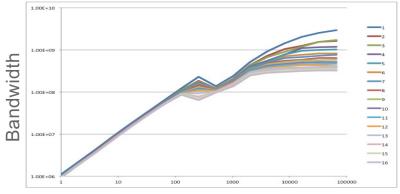
- Start with the choice of mathematical model/numerical method
 - E.g., higher-order approximations for finite difference/element/volume trade floating point operations, data motion, and data size
 - Higher level choices can provide better locality
 - E.g., nonlinear Schwarz, with "local" nonlinear solves
- Performance models needed to guide algorithm design/choice
 - Model does *not* need to be precise just good enough to guide
 - This is fortunate, as highly accurate performance models are very difficult to create and validate
 - But they need to be accurate enough and many models haven't kept up with the evolution of architectures
- One Example: Node-aware algorithms
 - Performance model captures basic system hierarchy at node level
 - Avoid redundant data copies; optimize data motion for HW characteristics
 - Suggests a different approach for process topology mapping...

MPI On Multicore Nodes

- MPI Everywhere (single core/single thread MPI processes) still common
 - · Easy to think about
 - We have good performance models (or do we?)
- In reality, there are issues
 - Memory per core declining
 - · Need to avoid large regions for data copies, e.g., halo cells
 - MPI implementations could share internal table, data structures
 - · May only be important for extreme scale systems
 - MPI Everywhere implicitly assume uniform communication cost model
 - · Limits algorithms explored, communication optimizations used
- Even here, there is much to do for
 - Algorithm designers
 - Application implementers
 - MPI implementation developers
- One example: Can we use the single core performance model for MPI?
 - T = s + rn
 - Widely used and effective for designing parallel algorithms
 - Similar issues with logP, other models.

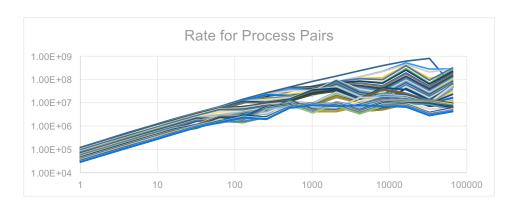
Rates Per MPI Process

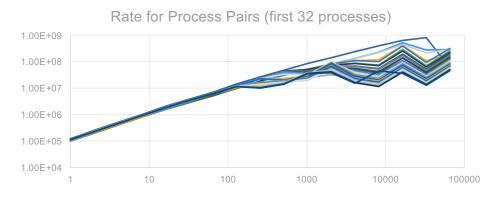




- Ping-pong between 2 nodes using 1-16 cores on each node
- Top is BG/Q, bottom Cray XE6
- "Classic" model
 predicts a single curve
 – rates independent of
 the number of
 communicating
 processes

Rates Per MPI Process: 128 cores

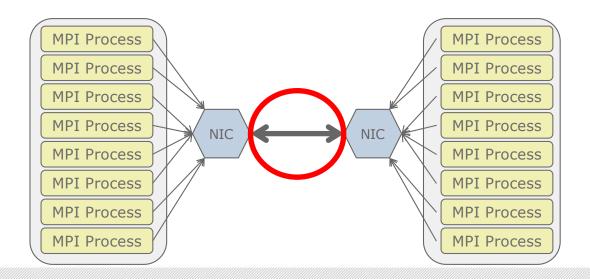




- Increasing core count makes the situation more complex
- Note roughly similar behavior for first 32 processes
 - 1 process / core
 - 64 cores/socket
- As before, classic model predicts a single curve – rate depends only on length, independent of number of communicating processes

Why this Behavior?

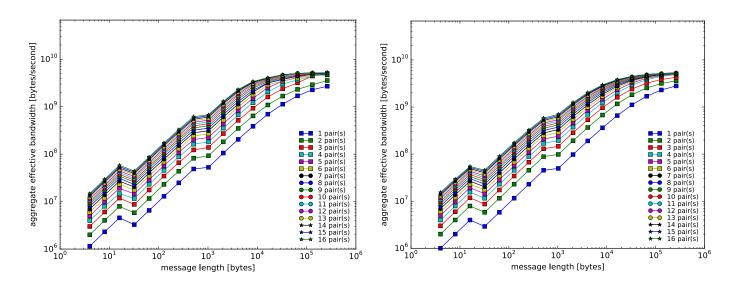
- The T = s + r n model predicts the *same* performance independent of the number of communicating processes
 - What is going on?
 - How should we model the time for communication?



A Slightly Better Model

- For k processes sending messages, the sustained rate is
 - min(R_{NIC-NIC}, k R_{CORE-NIC})
- Thus
 - $T = s + k n/min(R_{NIC-NIC}, k R_{CORE-NIC})$
- Note if R_{NIC-NIC} is very large (very fast network), this reduces to
 - $T = s + k n/(k R_{CORE-NIC}) = s + n/R_{CORE-NIC}$
- This model is approximate; additional terms needed to capture effect of shared data paths in node, contention for shared resources, etc.
- But this new term is by far the dominant one
- This is the *max-rate* model (for performance limited by the maximum available bandwidth)
 - Logp model has a similar limitation and needs a similar modification

Comparison on Cray XE6



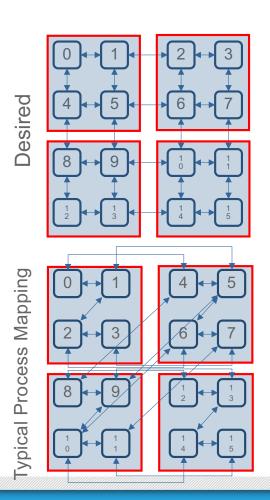
Measured Data

Max-Rate Model

Modeling MPI Communication Performance on SMP Nodes: Is it Time to Retire the Ping Pong Test, W Gropp, L Olson, P Samfass, Proceedings of EuroMPI 16, https://doi.org/10.1145/2966884.2966919

Performance Model to Algorithm

- Performance measurements of halo exchange show poor communication performance
 - Bandwidth per process low relative to "ping pong" measurements
 - Easy target blame contention in the network
- But common default mapping of processes to nodes leads to more off-node communication
 - The max rate model predicts reduced performance once R_{NIC-NIC} limit reached
- We can use this to create a better, and simpler, implementation of MPI_Cart_create



Building A Better MPI_Cart_create

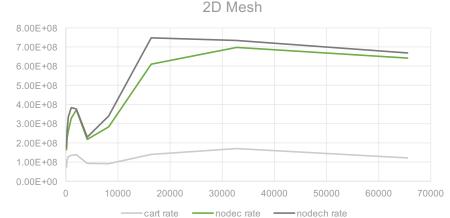
- Hypothesis: A better process mapping within a node will provide significant benefits
 - Ignore the internode network topology
 - Vendors have argued that their network is fast enough that process mapping isn't necessary
 - They may be (almost) right once data enters the network
- Idea for Cartesian Process Topologies
 - Identify nodes (see MPI_Comm_split_type)
 - Map processes within a node to minimize internode communication
 - Trading intranode for internode communication
 - Using Node Information to Implement MPI Cartesian Topologies, Gropp, William D., Proceedings of the 25th European MPI Users' Group Meeting, 18:1–18:9, 2018 https://dl.acm.org/citation.cfm?id=3236377
 - Using Node and Socket Information to Implement MPI Cartesian Topologies, Parallel Computing, 2019 https://doi.org/10.1016/j.parco.2019.01.001

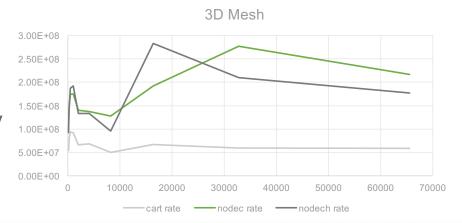
Increasing Core Count Makes Proper Mapping

More Important

Cartesian mapping on Delta

- CPU nodes have 2 AMD Milan x 64 cores each (GPU nodes have 1 AMD Milan and 4 A100 or A40 NVIDEA GPUs)
- Slingshot network (mostly NIC update coming)
- Performance in B/s (higher is better)
- Default mapping provides poor performance
 - Cart is MPI_Cart_create also MPI_COMM_WORLD
 - Nodec uses node-awareness, inspired by max-rate model
 - Nodech extends to socket (3-level)



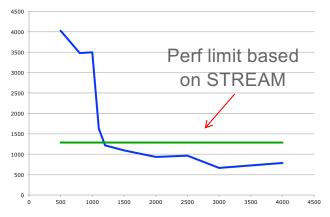


Is Generating Fast Executables from Modern Code a Solved Problem?

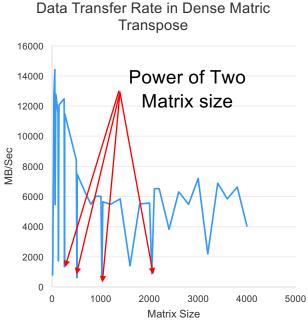
- There are some good successes but still a challenge
- Features of successes
 - Existing languages
 - But perhaps directives/command line to fine tune semantics and choice of optimizations
 - Code transformations at various levels
 - Separate out schedule from operation (forall, iterators)
- Even transpose is tricky
 - As we'll see in the next few slides
 - Transpose involves only data motion; no floating-point order to respect
 - Only a double loop (fewer options to consider)

A Simple Example: Dense Matrix Transpose

- do j=1,n
 do i=1,n
 b(i,j) = a(j,i)
 enddo
 enddo
- No temporal locality (data used once)
- Spatial locality only if (words/cacheline) * n fits in cache



 Performance plummets when matrices no longer fit in cache



Blocking for Cache Helps

- do jj=1,n,stridej
 do ii=1,n,stridei
 do j=jj,min(n,jj+stridej-1)
 do i=ii,min(n,ii+stridei-1)
 b(i,j) = a(j,i)
- Good choices of stridei and stridej can improve performance by a factor of 2 or more
- But what are the choices of stridei and stridej?
 - AMD Milan, runs July 5, 2022

- For matrices too large for cache (4000x4000 for these tests), performance ranges from 2.7 to 8.1 GB/sec
- Straightforward code (-O3) provides about 3.1GB/sec
 - Best blocked code about 2.6 times as fast
- Similar results (though at lower sustained bandwidth) when running on multiple cores concurrently
 - This is the more relevant case

Why Isn't Generating High Performance Code Really Solved?

- Assumes accurate performance model but this is very challenging in most cases
 - Machine Learning will probably provide better ways to create/update performance models, but may be difficult to use for the second part
- Assumes manageable space of options from which to choose but
 - Search space is huge
 - Complexity of performance behavior (even if you had an accurate model)
 makes it difficult to prune the search space

Code is the Enemy

- Code is a precise, executable description of an algorithm+data structure, relative to a machine model
 - Precision is good, but...
 - High-level, abstract machine models may make it hard to achieve performance
- How do we "solve" this (write code that gives performance) now?
 - Ignore hope for the best from the compiler and libraries
 - Produce fast(ish) code for one system
 - Might include optimization "tricks" loop unrolling, special vector intrinsics, vendorspecific GPU code, data structure choices (array of structures or structure of arrays or arrays of structures of arrays or ...)
- A true solution must deal with challenges at all levels
 - Requires handling complexity at all levels humans and tools typically focus on just one part of the problem

The "upstream" Problem

- In a perfect world, clever ideas get pushed into compilers/tools, and we build on them. The world is far from perfect
- Clever ideas are often also complex hard to maintain, unexpected interactions with other parts of the code
- This argues for a combination of
 - Augmenting / extending existing languages and systems to build on existing ecosystems
 - Code transformation / writing tools to help compilers/systems
- Some of the difficult issues are in how to accomplish the combination - the "+"

Building A Code EcoSystem

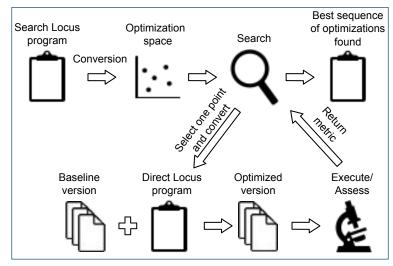
- As part of two DOE-funded projects (XPACC and CEESD), we've been developing tools to help computational scientists focus on their science
- Locus/ICE
 - Manage code transformations and search among the transformations for best performance
- Moya Just In Time Compilation
 - Some things are only known at runtime; given that data, can produce much faster code
 - Use static analysis performed at compile time to make runtime code generation faster, better
 - "Moya-A JIT Compiler for HPC", Programming and Performance Visualization Tools 2019 https://link.springer.com/chapter/10.1007/978-3-030-17872-7_4
 - Note transpose results given earlier relied on compile-time choice of block size to help compiler generate good code
- MIRGE
 - Start at higher level representation of algorithm
 - But do so by exploiting an existing system (Python in our case), not a new language
- Of course, there are many other efforts
 - ATLAS, Spiral, FFTW, FEniCS, TCE, etc.

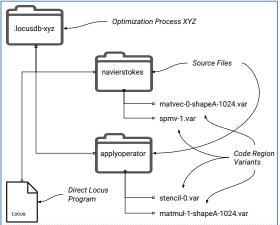
Practical Low-level Performance

- Processors have very complex performance behavior; extremely difficult to accurately predict performance or even order different alternatives
 - Without accurate, affordable performance model, no a priori decision can be made on which code (transformations) to use
- In practice, often need to consider alternatives
 - While compiler can do this in principle, rare and often impractical in practice
- How can you harness the power of code transformation and autotuning systems?

Locus

- Source code is annotated to define code regions
- Optimization file notation orchestrates the use of the optimization tools on the code regions defined
- Interface provides operations on the source code to invoke optimizations through:
 - Adding pragmas
 - Adding labels
 - Replacing code regions
- These operations are used by the interface to plug-in optimization tools
- Most tools are source-to-source
 - tools must understand output of previous tools
- Joint work with Thiago Teixeira and David Padua, "Managing Code Transformations for Better Performance Portability", IJHPCA, 2019 https://doi.org/10.1177%2F1094342019865606





Matrix Multiply Example

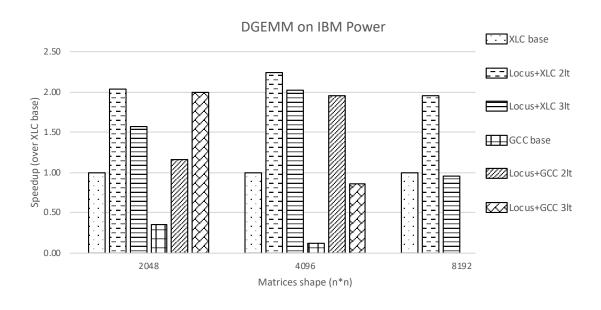
```
    #pragma @LOCUS loop=matmul
for(i=0; i<M; i++)
for(j=0; j<N; j++)
for(k=0; k<K; k++)
C[i][j] = beta*C[i][j] + alpha*A[i][k] * B[k][j];</li>
```

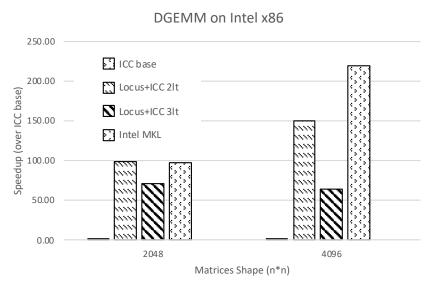
```
dim=4096;
Search {
 buildcmd = "make clean all";
 runcmd = "./matmul";
CodeReg matmul {
 RoseLocus.Interchange(order=[0,2,1]);
 tilel = poweroftwo(2..dim);
 tileK = poweroftwo(2..dim);
 tileJ = poweroftwo(2..dim);
 Pips.Tiling(loop="0", factor=[tileI, tileK, tileJ]);
 tilel 2 = poweroftwo(2..tilel);
 tileK 2 = poweroftwo(2..tileK);
 tileJ 2 = poweroftwo(2..tileJ);
 Pips.Tiling(loop="0.0.0.0",
        factor=[tilel 2, tileK 2, tileJ 2]);
  tilel 3 = poweroftwo(2..tilel 2);
  tileK 3 = poweroftwo(2..tileK 2);
  tileJ 3 = poweroftwo(2..tileJ 2);
  Pips.Tiling(loop="0.0.0.0.0.0.0",
          factor=[tilel 3, tileK 3, tileJ 3]);
 } OR {
  None:
```


Locus Generated Code (for specific platform/size)

• #pragma @LOCUS loop=matmul
for(i_t = 0; i_t <= 7; i_t += 1)
for(k_t = 0; k_t <= 3; k_t += 1)
for(j_t = 0; j_t <= 1; j_t += 1)
for(i_t_t = 8 * i_t; i_t_t <= ((8 * i_t) + 7); i_t_t += 1)
for(k_t_t = 256 * k_t; k_t_t <= ((256 * k_t) + 255); k_t_t += 1)
for(j_t_t = 32 * j_t; j_t_t <= ((32 * j_t) + 31); j_t_t += 1)
for(i = 64 * i_t_t; i <= ((64 * i_t_t) + 63); i += 1)
for(k = 4 * k_t_t; k <= ((4 * k_t_t) + 3); k += 1)
for(j = 64 * j_t_t; j <= ((64 * j_t_t) + 63); j += 1)
C[i][j] = beta*C[i][j] + alpha*A[i][k]*B[k][j];</pre>

DGEMM by Matrix Size





Tuning Must be in a Representative Environment

- For most processors and regular (e.g., vectorizable) computations
 - Memory bandwidth for a chip is much larger than needed by a single core
 - Share of memory bandwidth for a core (with all cores accessing memory) is much smaller than needed to avoid waiting on memory
- Performance tests on a single core can be very misleading
 - Example follows
 - Can use simple MPI tools to explore dependence on using one to all cores
 - See baseenv package
 - Ask this question when you review papers

Stencil Sweeps

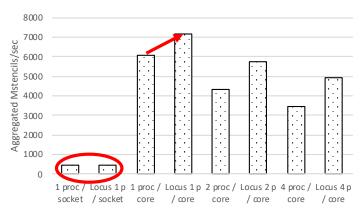
- Common operation for PDE solvers
 - Structured are often "matrix free"
 - Unstructured and structured mesh stencils have low "computational intensity" number of floating-point operations per bytes moved
- Conventional wisdom is that cache blocking and similar optimizations are ineffective
 - For example, "Optimization and Performance Modeling of Stencil Computations on Modern Microprocessors" argues this, and provides experimental data to support it
 - https://epubs.siam.org/doi/10.1137/070693199 (accepted 2007, published 2009)
- But the analysis and experiments are usually based on one core per chip/socket
 - And the number of cores has grown substantially since 2007
 - What if every core is executing a stencil sweep?

Stencil Sweeps

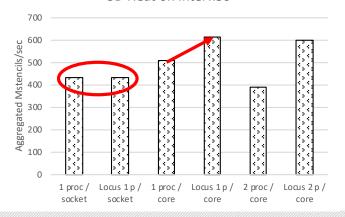
```
void heat3d(double A[2][N+2][N+2][N+2]) {
int i, j, t, k;

#pragma @LOCUS loop=heat3d
for(t = 0; t < T-1; t++) {
for(i = 1; i < N+1; i++) {
for(j = 1; j < N+1; j++) {
    for (k = 1; k < N+1; k++) {
        A[(t+1)%2][i][j][k] = 0.125 * (A[t%2][i+1][j][k] -
        2.0 * A[t%2][i][j][k] + A[t%2][i-1][j][k]) + 0.125 * (A[t%2][i][j+1][k]
        - 2.0 * A[t%2][i][j][k] + A[t%2][i][j-1][k]) + 0.125 * (A[t%2][i][j][k-1] - 2.0 * A[t%2][i][j][k] + A[t%2][i][j][k+1]) + A[t%2][i][j][k]; } } }
}</pre>
```

3D Heat on IBM Power



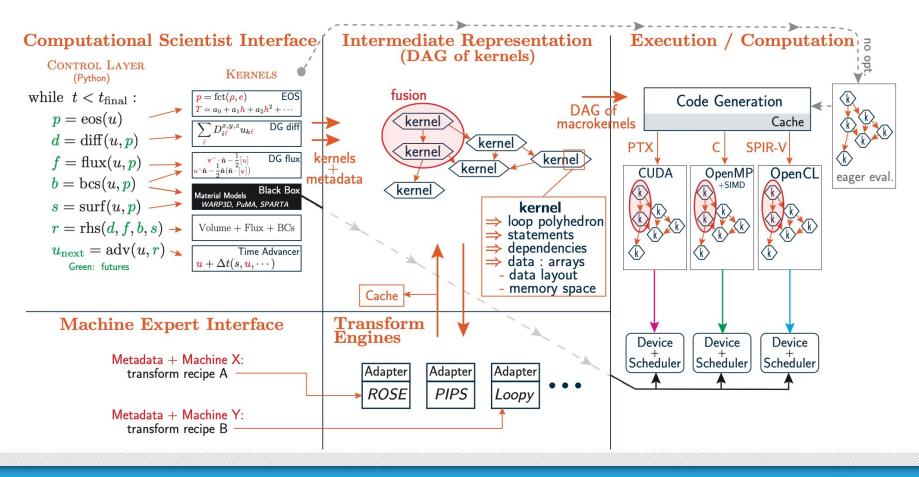
3D Heat on Intel x86



A High Level Approach

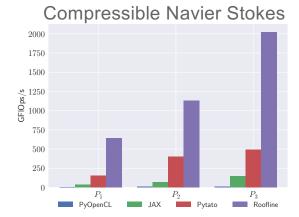
- Start with Python
 - High level language with strong software ecosystem
 - Integrate with code transformation/generation tools to create highperformance versions
- Alternative to creating a new Domain Specific Language
- Center for Exascale-Enabled Scramjet Design
 - · Ceesd.Illinois.edu
 - Coupled hypersonic fluid flow with combustion and material interaction
 - Target is DOE Exascale systems nodes with multiple accelerators
 - Changing nodes IBM P9+NVIDIA to AMD+AMD (and Intel+Intel if ANL included)

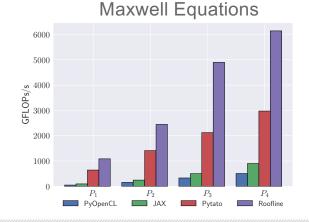
MIRGE Overview



Early Performance Results

- Abstractions visible to app:
 - · numpy-like array, nested containers thereof
 - Array op. indirection layer (use Jax, Pytato, Numpy, eager GPU)
 - Metadata ("tags") describe arrays, axes in app. Terms
- Pipeline of intermediate representations
 - · Array DFG ("pytato") via lazy eval, lowered to
 - Imperative, polyhedral ("loopy") represetnation, lowered to
 - OpenCL (for execution)
- Transformations (currently)
 - On Array DFG: Metadata prop., materialization, redundant exprs.
 - On loop IR: Loop/kernel fusion, array contraction, tile and prefetch
 - Driven by app-aware transform code using metadata
- Organizational unit for tile/prefetch: "Fused einsum"
- Numerical method is DG-FEM
- Performance measured on single Nvidia Titan V GPU
- Work of Kaushik Kulkarni and Andreas Klöckner





Summary and Challenges

- Achieving performance is hard
 - Compilers, Libraries, and tools can help
 - But complexity of real systems requires tuning, which implies flexibility in code generation
 - Relatively simple performance models can help answer "Is this as fast as it should be?"
- Leverage existing systems: "build on the shoulders of giants"
- Build on software ecosystem to realize algorithms
 - Need to consider high and low level needs and address separately but compatibly
- Need to embrace composition of programming systems, address "+"

