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Achieving High Performance is Increasingly 
Difficult
• Systems are increasingly complex

• It was bad enough with caches and vector instructions, now add HBM and 
GPUs – and not just 1 of each

• Multi GPU common; more than one socket/node.
• Even effective use of a single CPU core (which means using 

appropriate vector and other instructions) is difficult
• Compiler vectorization requires high levels of optimization and still misses 

optimization opportunities (45/151 in test last week)
• Best performance still requires specialized code, use of intrinsics, etc.

• Before we go any farther: Who is the audience for this talk?
• People needing most/all of the available performance
• Note that Dennard (Frequency) scaling ended ~ 2006, and since then, 

performance has relied on parallelism at all levels and specialization



HPC Nodes are Increasingly Complex

DOE Sierra
• Power 9 with 4 NVIDA 

Volta GPU
• 4320 nodes
DOE Summit similar, but
• 6 NVIDIA GPUs/node
• 4608 nodes

Fugaku
• Fujitsu A64FX (includes 

Vector Extensions)
• 158,976 (+) nodes

DOE Frontier
• AMD with 4 AMD 

GPU
• 100+ racks

NCSA Delta similar but 
fewer racks J

DOE Aurora
• Intel SR with 6 

Intel Ponte 
Vecchio GPUs

• Being deployed, 
>9K nodes



Hardware Implications For Programs
• Heterogeneity in many ways

• Processor – complex compute modes with scalar and vector
• Many (but not all) include separate accelerators (GPUs and others)
• Memory – Cache was bad enough; now HBM, other
• I/O – Burst buffers (often violating POSIX semantics), on node, central, remote 

(cloud)
• For algorithm developer and programmer, the issue is Performance 

Heterogeneity
• Whether the implementation uses more than one chip(let) isn’t the issue – can you 

see performance impact of the different elements?
• Even vectorization counts as performance heterogeneity in this view

• Compilers still not great at vectorizing code, and often algorithmic changes needed to take 
full advantage of vectorization (which specializes code, makes it hard to reason about 
performance)

• Impacts algorithm choice and program realization



Algorithm Considerations
• Start with the choice of mathematical model/numerical method

• E.g., higher-order approximations for finite difference/element/volume trade 
floating point operations, data motion, and data size

• Higher level choices can provide better locality
• E.g., nonlinear Schwarz, with “local” nonlinear solves

• Performance models needed to guide algorithm design/choice
• Model does not need to be precise – just good enough to guide
• This is fortunate, as highly accurate performance models are very difficult to 

create and validate
• But they need to be accurate enough – and many models haven’t kept up with the 

evolution of architectures
• One Example: Node-aware algorithms

• Performance model captures basic system hierarchy at node level
• Avoid redundant data copies; optimize data motion for HW characteristics
• Suggests a different approach for process topology mapping…



MPI On Multicore Nodes
• MPI Everywhere (single core/single thread MPI processes) still common

• Easy to think about
• We have good performance models (or do we?)

• In reality, there are issues
• Memory per core declining

• Need to avoid large regions for data copies, e.g., halo cells
• MPI implementations could share internal table, data structures

• May only be important for extreme scale systems
• MPI Everywhere implicitly assume uniform communication cost model

• Limits algorithms explored, communication optimizations used
• Even here, there is much to do for

• Algorithm designers
• Application implementers
• MPI implementation developers

• One example: Can we use the single core performance model for MPI?
• T = s + r n 
• Widely used and effective for designing parallel algorithms
• Similar issues with logP, other models.



Rates Per MPI Process
• Ping-pong between 2 

nodes using 1-16 
cores on each node

• Top is BG/Q, bottom 
Cray XE6

• “Classic” model 
predicts a single curve 
– rates independent of 
the number of 
communicating 
processes
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Rates Per MPI Process: 128 cores
• Increasing core count makes 

the situation more complex
• Note roughly similar behavior 

for first 32 processes
• 1 process / core
• 64 cores/socket

• As before, classic model 
predicts a single curve – rate 
depends only on length, 
independent of number of 
communicating processes
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Why this Behavior?
• The T = s + r n model predicts the same performance independent 

of the number of communicating processes
• What is going on?
• How should we model the time for communication?
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A Slightly Better Model
• For k processes sending messages, the sustained rate is

• min(RNIC-NIC, k RCORE-NIC)
• Thus

• T = s + k n/min(RNIC-NIC, k RCORE-NIC)
• Note if RNIC-NIC is very large (very fast network), this reduces to

• T = s + k n/(k RCORE-NIC) = s + n/RCORE-NIC

• This model is approximate; additional terms needed to capture effect of 
shared data paths in node, contention for shared resources, etc.

• But this new term is by far the dominant one
• This is the max-rate model (for performance limited by the maximum 

available bandwidth)
• Logp model has a similar limitation and needs a similar modification



Comparison on Cray XE6

Measured Data Max-Rate Model
Modeling MPI Communication Performance on SMP Nodes: Is it Time to Retire 
the Ping Pong Test, W Gropp, L Olson, P Samfass, Proceedings of EuroMPI 16, 

https://doi.org/10.1145/2966884.2966919

https://doi.org/10.1145/2966884.2966919


Performance Model to Algorithm
• Performance measurements of halo 

exchange show poor communication 
performance

• Bandwidth per process low relative to “ping 
pong” measurements

• Easy target – blame contention in the network
• But common default mapping of processes 

to nodes leads to more off-node 
communication

• The max rate model predicts reduced 
performance once RNIC-NIC limit reached

• We can use this to create a better, and 
simpler, implementation of MPI_Cart_create
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Building  A Better MPI_Cart_create
• Hypothesis: A better process mapping within a node will provide 

significant benefits
• Ignore the internode network topology

• Vendors have argued that their network is fast enough that process mapping isn’t 
necessary

• They may be (almost) right – once data enters the network

• Idea for Cartesian Process Topologies
• Identify nodes (see MPI_Comm_split_type)
• Map processes within a node to minimize internode communication

• Trading intranode for internode communication
• Using Node Information to Implement MPI Cartesian Topologies, Gropp, William D., 

Proceedings of the 25th European MPI Users' Group Meeting, 18:1–18:9, 2018 
https://dl.acm.org/citation.cfm?id=3236377

• Using Node and Socket Information to Implement MPI Cartesian Topologies, Parallel 
Computing, 2019 https://doi.org/10.1016/j.parco.2019.01.001

https://dl.acm.org/citation.cfm?id=3236377
https://doi.org/10.1016/j.parco.2019.01.001


Increasing Core Count Makes Proper Mapping 
More Important
• Cartesian mapping on Delta

• CPU nodes have 2 AMD Milan x 64 
cores each (GPU nodes have 1 AMD 
Milan and 4 A100 or A40 NVIDEA GPUs)

• Slingshot network (mostly – NIC update 
coming)

• Performance in B/s (higher is better)
• Default mapping provides poor 

performance
• Cart  is MPI_Cart_create – also 

MPI_COMM_WORLD
• Nodec uses node-awareness, inspired by 

max-rate model
• Nodech extends to socket (3-level)
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Is Generating Fast Executables from Modern Code 
a Solved Problem?
• There are some good successes – but still a challenge
• Features of successes

• Existing languages
• But perhaps directives/command line to fine tune semantics and choice of 

optimizations
• Code transformations at various levels
• Separate out schedule from operation (forall, iterators)

• Even transpose is tricky 
• As we’ll see in the next few slides
• Transpose involves only data motion; no floating-point order to respect
• Only a double loop (fewer options to consider)



A Simple Example: Dense Matrix Transpose

• do j=1,n
do i=1,n

b(i,j) = a(j,i)
enddo

enddo
• No temporal locality 

(data used once)
• Spatial locality only if 

(words/cacheline) * n 
fits in cache

• Performance plummets 
when matrices no longer 
fit in cache

Perf limit based 
on STREAM
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Blocking for Cache Helps
• do jj=1,n,stridej    

do ii=1,n,stridei
do j=jj,min(n,jj+stridej-1)

do i=ii,min(n,ii+stridei-1)
b(i,j) = a(j,i)

• Good choices of stridei and stridej
can improve performance by a factor 
of 2 or more

• But what are the choices of stridei
and stridej?

• AMD Milan, runs July 5, 2022

• For matrices too large for 
cache (4000x4000 for these 
tests), performance ranges 
from 2.7 to 8.1 GB/sec

• Straightforward code (-O3) 
provides about 3.1GB/sec

• Best blocked code about 2.6 
times as fast

• Similar results (though at lower 
sustained bandwidth) when 
running on multiple cores 
concurrently

• This is the more relevant case



Why Isn’t Generating High Performance Code 
Really Solved?
• Assumes accurate performance model – but this is very 

challenging in most cases
• Machine Learning will probably provide better ways to create/update 

performance models, but may be difficult to use for the second part
• Assumes manageable space of options from which to choose – but

• Search space is huge
• Complexity of performance behavior (even if you had an accurate model) 

makes it difficult to prune the search space



Code is the Enemy
• Code is a precise, executable description of an algorithm+data

structure, relative to a machine model
• Precision is good, but…
• High-level, abstract machine models may make it hard to achieve 

performance
• How do we “solve” this (write code that gives performance) now?

• Ignore – hope for the best from the compiler and libraries
• Produce fast(ish) code for one system

• Might include optimization “tricks” – loop unrolling, special vector intrinsics, vendor-
specific GPU code, data structure choices (array of structures or structure of arrays or 
arrays of structures of arrays or …)

• A true solution must deal with challenges at all levels
• Requires handling complexity at all levels – humans and tools typically 

focus on just one part of the problem



The “upstream” Problem
• In a perfect world, clever ideas get pushed into compilers/tools, and 

we build on them. The world is far from perfect
• Clever ideas are often also complex – hard to maintain, unexpected 

interactions with other parts of the code
• This argues for a combination of

• Augmenting / extending existing languages and systems to build on 
existing ecosystems

• Code transformation / writing tools to help compilers/systems
• Some of the difficult issues are in how to accomplish the 

combination - the “+” 



Building A Code EcoSystem
• As part of two DOE-funded projects (XPACC and CEESD), we’ve been developing 

tools to help computational scientists focus on their science
• Locus/ICE

• Manage code transformations and search among the transformations for best performance
• Moya Just In Time Compilation

• Some things are only known at runtime; given that data, can produce much faster code
• Use static analysis performed at compile time to make runtime code generation faster, better
• “Moya-A JIT Compiler for HPC”, Programming and Performance Visualization Tools 2019 

https://link.springer.com/chapter/10.1007/978-3-030-17872-7_4
• Note transpose results given earlier relied on compile-time choice of block size to help compiler 

generate good code
• MIRGE

• Start at higher level representation of algorithm
• But do so by exploiting an existing system (Python in our case), not a new language

• Of course, there are many other efforts
• ATLAS, Spiral, FFTW, FEniCS, TCE, etc.

https://link.springer.com/chapter/10.1007/978-3-030-17872-7_4


Practical Low-level Performance

• Processors have very complex performance behavior; extremely 
difficult to accurately predict performance or even order different 
alternatives

• Without accurate, affordable performance model, no a priori decision can 
be made on which code (transformations) to use

• In practice, often need to consider alternatives
• While compiler can do this in principle, rare and often impractical in 

practice
• How can you harness the power of code transformation and 

autotuning systems?



Locus
• Source code is annotated to define code 

regions
• Optimization file notation orchestrates the use of 

the optimization tools on the code regions 
defined

• Interface provides operations on the source 
code to invoke optimizations through:

• Adding pragmas
• Adding labels
• Replacing code regions

• These operations are used by the interface to 
plug-in optimization tools

• Most tools are source-to-source
• tools must understand output of previous tools

• Joint work with Thiago Teixeira and David 
Padua, “Managing Code Transformations for 
Better Performance Portability”, IJHPCA, 2019 
https://doi.org/10.1177%2F1094342019865606
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Matrix Multiply Example
• #pragma @LOCUS loop=matmul

for(i=0; i<M; i++)
for(j=0; j<N; j++) 

for(k=0; k<K; k++)
C[i][j] = beta*C[i][j] + alpha*A[i][k] * B[k][j];

dim=4096;
Search {
buildcmd = "make clean all";
runcmd = "./matmul";

}
CodeReg matmul {
RoseLocus.Interchange(order=[0,2,1]);
tileI = poweroftwo(2..dim);
tileK = poweroftwo(2..dim);
tileJ = poweroftwo(2..dim);
Pips.Tiling(loop="0", factor=[tileI, tileK, tileJ]);
tileI_2 = poweroftwo(2..tileI);
tileK_2 = poweroftwo(2..tileK);
tileJ_2 = poweroftwo(2..tileJ);
Pips.Tiling(loop="0.0.0.0",

factor=[tileI_2, tileK_2, tileJ_2]);
{
tileI_3 = poweroftwo(2..tileI_2);
tileK_3 = poweroftwo(2..tileK_2);
tileJ_3 = poweroftwo(2..tileJ_2);
Pips.Tiling(loop="0.0.0.0.0.0.0",

factor=[tileI_3, tileK_3, tileJ_3]);
} OR {
None;

}
}



Locus Generated Code
(for specific platform/size)

• #pragma @LOCUS loop=matmul
for(i_t = 0; i_t <= 7; i_t += 1)
for(k_t = 0; k_t <= 3; k_t += 1)
for(j_t = 0; j_t <= 1; j_t += 1)
for(i_t_t = 8 * i_t; i_t_t <= ((8 * i_t) + 7); i_t_t += 1) 
for(k_t_t = 256 * k_t; k_t_t <= ((256 * k_t) + 255); k_t_t += 1) 
for(j_t_t = 32 * j_t; j_t_t <= ((32 * j_t) + 31); j_t_t += 1)
for(i = 64 * i_t_t; i <= ((64 * i_t_t) + 63); i += 1)
for(k = 4 * k_t_t; k <= ((4 * k_t_t) + 3); k += 1)
for(j = 64 * j_t_t;j <= ((64 * j_t_t) + 63); j += 1)

C[i][j] = beta*C[i][j] + alpha*A[i][k]*B[k][j]; 



DGEMM by Matrix Size
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• For most processors and regular (e.g., vectorizable) computations
• Memory bandwidth for a chip is much larger than needed by a single core
• Share of memory bandwidth for a core (with all cores accessing memory) is 

much smaller than needed to avoid waiting on memory
• Performance tests on a single core can be very misleading

• Example follows
• Can use simple MPI tools to explore dependence on using one to all cores

• See baseenv package
• Ask this question when you review papers J

Tuning Must be in a Representative Environment



• Common operation for PDE solvers
• Structured are often “matrix free”
• Unstructured and structured mesh stencils have low ”computational intensity” –

number of floating-point operations per bytes moved
• Conventional wisdom is that cache blocking and similar optimizations 

are ineffective
• For example, “Optimization and Performance Modeling of Stencil Computations 

on Modern Microprocessors” argues this, and provides experimental data to 
support it

• https://epubs.siam.org/doi/10.1137/070693199 (accepted 2007, published 2009)
• But the analysis and experiments are usually based on one core per 

chip/socket
• And the number of cores has grown substantially since 2007
• What if every core is executing a stencil sweep? 

Stencil Sweeps

https://epubs.siam.org/doi/10.1137/070693199


Stencil Sweeps
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3D Heat on Intel x86  

void heat3d(double A[2][N+2][N+2][N+2]) { 
int i, j, t, k; 
#pragma @LOCUS loop=heat3d 
for(t = 0; t < T-1; t++) { 
for(i = 1; i < N+1; i++) { 
for(j = 1; j < N+1; j++) { 
for (k = 1; k < N+1; k++) { 
A[(t+1)%2][i][j][k] = 0.125 * (A[t%2][i+1][j][k] -
2.0 * A[t%2][i][j][k] + A[t%2][i-1][j][k]) + 0.125 * (A[t%2][i][j+1][k] 
- 2.0 * A[t%2][i][j][k] + A[t%2][i][j-1][k]) + 0.125 * (A[t%2][i][j][k-
1] - 2.0 * A[t%2][i][j][k] + A[t%2][i][j][k+1]) + A[t%2][i][j][k]; } } } }
}



A High Level Approach
• Start with Python

• High level language with strong software ecosystem
• Integrate with code transformation/generation tools to create high-

performance versions
• Alternative to creating a new Domain Specific Language
• Center for Exascale-Enabled Scramjet Design

• Ceesd.Illinois.edu
• Coupled hypersonic fluid flow with combustion and material interaction
• Target is DOE Exascale systems – nodes with multiple accelerators
• Changing nodes – IBM P9+NVIDIA to AMD+AMD (and Intel+Intel if ANL 

included)

https://ceesd.illinois.edu/


MIRGE Overview



Early Performance Results
• Abstractions visible to app:

• numpy-like array, nested containers thereof
• Array op. indirection layer (use Jax, Pytato, Numpy, eager GPU)
• Metadata ("tags") describe arrays, axes in app. Terms

• Pipeline of intermediate representations
• Array DFG (“pytato”) via lazy eval, lowered to
• Imperative, polyhedral (“loopy”) represetnation, lowered to
• OpenCL (for execution)

• Transformations (currently)
• On Array DFG: Metadata prop., materialization, redundant exprs.
• On loop IR: Loop/kernel fusion, array contraction, tile and prefetch
• Driven by app-aware transform code using metadata

• Organizational unit for tile/prefetch: “Fused einsum”
• Numerical method is DG-FEM
• Performance measured on single Nvidia Titan V GPU
• Work of Kaushik Kulkarni and Andreas Klöckner
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Summary and Challenges
• Achieving performance is hard

• Compilers, Libraries, and tools can help
• But complexity of real systems requires tuning, which implies flexibility in 

code generation
• Relatively simple performance models can help answer “Is this as fast as it 

should be?”
• Leverage existing systems: “build on the shoulders of giants”
• Build on software ecosystem to realize algorithms

• Need to consider high and low level needs – and address separately but 
compatibly

• Need to embrace composition of programming systems, address 
“+”


