MPI| Past and Future

William Gropp
wgropp.cs.lllinois.edu

y INNCSA

Rolf and The MPI Forum

« The MPI Forum is an ad hoc group of volunteers passionate about
providing a practical, effective method for programming massively
parallel computers

* Rolf has been a key member of the Forum

A strong advocate for Fortran — and precision in use of and conformance to
the standard

* Rolf has also been a strong advocate for the use of language
features to make the MPI library more “user friendly”, including
catching usage errors at compile time

INNCSA

Some Context

» Before MPI, there was chaos — many systems, but mostly different
names for similar functions.
 Even worse — similar but not identical semantics

« Same time(ish) as attack of the killer micros
« Single core per node for almost all systems

 Era of rapid performance increases due to Dennard scaling

« Most users could just wait for their codes to get faster on the next generation
hardware

 MPI benefitted from a stable software environment

* Node programming changed slowly, mostly due to slow quantitative changes in cache,
instruction sets (e.g., new vector instructions)

* The end of Dennard scaling unleashed architectural innovation

« And imperatives — more performance requires exploiting
parallelism or specialized architectures

« (Finally) innovation in memory — at least for bandwidth

Why Was MPI Successful?

* [t addresses all of the following issues:
 Portability
« Performance
« Simplicity and Symmetry
» Modularity
« Composability
« Completeness
« For a more complete discussion, see “Learning from the Success
of MP1”,

* https://link.springer.com/chapter/10.1007/3-540-45307-5 8

INNCSA

http://wgropp.cs.illinois.edu/bib/papers/pdata/2001/mpi-lessons.pdf

Performance vs. Productivity

« MPI gives the tools for achieving performance
* In large part by not getting in the way of locality management

» But that very feature impacts productivity
» User has no choice but to manage locality, which is both hard and tricky

 [n addition, as Marc Snir has noted, MPI is neither high nor low
level

 But is that part of MPI's success — it does both high and low level,
and the tradeoff in greater use (mostly) makes up for loss of
performance/function

« Any programming system will need to consider the tradeoffs of
 Latency vs. Bandwidth vs. Convenience vs. Modularity (among others)

INNCSA

But What about the Programming Crisis?

» Use the right tools
» MPI tries to satisfy everyone, but the real strengths are in

« Attention to performance and scalability
» Support for libraries and tools

 Many computational scientists use frameworks and libraries built

upon MPI

 This is the right answer for most people

« Saying that MPI is the problem is like saying C (or C++) is the problem, and
if we just eliminated MPI (or C or C++) in favor of a high productivity
framework everyone’s problems would be solved

* In some ways, MPI is too usable — many people can get their work done
with it, which has reduced the market for other tools

 Particularly when those tools don'’t satisfy the 6 features in the success of MPI

INNCSA

What Might Be Next

* Intranode considerations
« SMPs (but with multiple coherence domains); new memory architectures

» Accelerators, customized processors (custom probably necessary for
power efficiency)

* MPI can be used (MPI+MPI or MPI| everywhere), but somewhat tortured

* No implementation built to support SIMD on SMP, no sharing of data structures or
coordinated use of the interconnect

* Internode considerations

* Networks supporting RDMA, remote atomics, even message matching
(partially supported in MPI now — but what’s next?)

» Overheads of ordering
+ Reliability (who is best positioned to recover from an error)

INNCSA

What Might Be Next

* MPI is both high and low level — can we resolve this?

» Challenges and Directions
« Scaling at fixed (or declining) memory per node
* How many MPI processes per node is “right?
 Realistic fault model that doesn’t guarantee state after a fault
« Support for complex memory models (MPl_Get _address ©)
« Support for applications requiring strong scaling

» Implies very low latency interface and overheads

* Low latency means paying close attention to the implementation
* RMA latencies sometimes 10-100x point-to-point in implementations (!)

« MPI performance in MPI_THREAD_MULTIPLE mode

* Integration with code re-writing and JIT systems as an alternative to a full
language

INNCSA

Adapt to Innovation in Architecture

« Complex nodes
« MPI + X, for X such as OpenMP, CUDA, OpenACC, etc. often effective
« But challenges in the “+”: sharing of resources such as cores, memory, ...

* Implementation of MPIl on complex nodes

« Sharing information between MPI processes on the same node that must
share resources, such as memory, network, accelerators, ...

» Optimize data movement

« Some can be hidden from the user (shared memory for intranode
message passing)

« Some requires user action — e.g., node-aware algorithms and
methods

INNCSA

Adaptto New Canguage Models —And 1o Their
Rapid Evolution

* |s (long-term) backward compatibility still important?
« Many newer languages and systems don’t think so — 5 years is long for
them
* How does the value of backward compatibility change with age?

« As older codes become less important (or more modern codes become
available), what is the tradeoff in making newer codes more
capable/flexible/etc. or the environment more productive?

* What is the cost to future applications and usage from providing

backward compatibility?

« Many of us started careers when long-term backward compatibility was
expected. Is this still the right thing?

* \What does all of this mean for MP1?

INNCSA

Adaptto New Application Domains and User
Communities

« Adapt to new application domains and user communities, as well
as expectations about software

« MPI is still for HPC — but new domains such as bioinformatics,
Health, Al+X,

One Sided/Remote Memory Access History
 MPI-2 added RMA in 1997 (25 years ago!)

« Some practice, but semantics before MPI often imprecise

« Matched hardware capabilities of high-end systems of the time (Cray
T3D/T3E; NEC Earth Simulator)

« Expected support in network NIC with local memory (hence memory model)
* Only collective association of memory with MPI_Win

* MPI-3 substantially revised and enhanced RMA in 2012

« Address overly strong correctness semantics (undefined rather than
erroneous) and additional use cases for applications

« Add “unified” memory model — HW support for coherency now widespread

- Add additional ways to associate memory, describe data transfers,
complete operations, and extend to processes sharing memory

* MPI-4 further updated RMA in 2021 (only minor changes)

INNCSA

Synchronization

* Moving data is the easy part. Synchronization/notification is the
hard part

 This is the biggest area where RMA has struggled, with many different
mechanisms for completing RMA
« Example: Fence — with hardware support, can be incredibly fast — but imposes a
“BSP’-like structure. More general semantics (groups != WORLD) may not have same
hardware support — and hence may not perform well
« How can MPI RMA stay current with technology when there isn'’t
consensus?
* It can’t — so we'll need to make some compromises

» We’re currently accepting lower performance and capability to get portability and
stability of code. Is that the right choice?

INNCSA

Audience

* Who is expected to use MPI RMA? End users? Tool developers?
Compiler writers?
* More precisely, which parts of RMA are for each of these groups?
* What is the role of libraries?

» For end users, how expert are the users? Shared memory issues are very
tricky; RMA shares many of these hazards.

* What is the lifetime required? Do RMA codes need to run without
change in 20 years? 10?7 57 At what cost in potential performance?
* This impacts how we approach hardware innovation

« Many modern software systems expect to break backward compatibility — is
it time for MPI to do the same, at least in some places?

INNCSA

Progress

* One-sided nature of RMA requires some progress guarantee

* But TANSTAAFL (There Aint No Such Thing As A Free Lunch)

« Many tradeoffs — e.g., more frequent/responsive progress may increase
latency, lower performance. Or increase latency but increase performance.
Or increase performance, because you found a good use for an idle core...

» Many changing technical tradeoffs (dark silicon, "extra” cores, ...)
 Tradeoffs that made sense with < 1core/chip may not with > 100 cores/chip

» Rather than all-or-nothing progress, is there something in the
middle?

* Note that MPI-2 permitted restricting passive target operations to special
memory — something many did not like, but made sense at the time

INNCSA

Performance and Generality

 MPIl is a greatest common denominator approach

« Often described insultingly as “least common denominator” — which is a
nonsense phrase

» But even “greatest common” is limited to “common”

 Significant performance impact when abstraction is far from what is
supported in hardware — but hardware operations still evolving
« Some systems handle by giving up on precision in the specification (!!)

* Is high performance low latency or high bandwidth? What if you
can’t have both?

INNCSA

Relevance

 Is MPlI RMA too complex, portable, limited, constrained, etc. to be
useful?
» Consider challenges in using MPI RMA for implementing other one-sided
programming systems and libraries

 MPI-2 RMA, for all of its limitations, was driven by use examples of
the time.

« What are the right use cases for MPI-5 RMA?
« What is the right audience?

INNCSA

Thoughts for RMA in MPI 5.0

* One-sided hardware acceleration remains in flux
* Unclear what are the right abstractions
« Suggests: Don’t require greatest common denominator for RMA
synchronization. Provide a way to access extensions and query for
capabilities. Define a likely subset where portability (in time and across
vendors) is important as a trade off in performance
* “Progress” may be solved, at least to first order

« Can we assume that there are enough cores/execution contexts to ensure
some progress?

« As above, are there intermediate levels of progress, as there are for thread
support?
 Evolution should be driven by use cases

* Where do we want to see MPI RMA used? How do we engage that
community?

INNCSA

Summary

 MPI| has been very successful, but faces challenges as computing
changes

* What is the balance between innovation (change) and stability
(backward compatibility)?

» Specification vs. implementation

« MPIl and X — how can be better compose programs that use
programming systems (languages, libraries, tools) optimized to
each part of the application?

 Become part of the conversation!
 Join the MPI Forum
 Participate in discussions
* Provide challenges

INNCSA

