
Enhancing the
Communication Performance

Models for SMPs
William Gropp

www.cs.illinois.edu/~wgropp

2

Classic Performance Model

•  s + rn
• Model combines overhead and

network latency (s) and a single
communication rate 1/r

• Good fit to machines when it was
introduced

• But does it match modern SMP-
based machines?

3

SMP Nodes: One Model

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

4

Modeling the Communication

• Each link can support a rate rL of
data

• Data is pipelined (Logp model)
♦ Store and forward analysis is different

• Overhead is completely parallel
♦ k processes sending one short

message each takes the same time as
one process sending one short
message

5

Sending One Message From
Each Process

• How do we model each process
sending one message to another
process on another node?
♦ Classic “postal” model:
♦ T = s+r n
♦ Each process has no impact on the

time that another process takes

6

A Slightly Better Model

• Assume that the sustained
communication rate is limited by
♦ The maximum rate along any shared

link
• The link between NICs

♦ The aggregate rate along parallel
links
• Each of the “links” from an MPI process

to/from the NIC

7

A Slightly Better Model

• For k processes sending messages,
the sustained rate is
♦ min(RNIC-NIC, kRCORE-NIC)

• Thus
♦ T = s + kn/Min(RNIC-NIC, kRCORE-NIC)

• Note if RNIC-NIC is very large (very
fast network), this reduces to
♦ T = s + kn/(kRCORE-NIC) = s + n/RCORE-

NIC

8

Observed Rates for Large
Messages

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n=256k

n=512k

n=1M

n=2M

Reached
maximum
data rate

Not double
single process
rate

9

A Slight Refinement

• Assume that handling more than
one communication in the NIC
requires a little extra overhead
♦ This is pretty arbitrary but we’ll see it

sometimes matches the data
♦ T = s + kn/Min(RNIC-NIC, RCoreBase +

(k-1)RCoreIncr)
♦ If RCoreBase = RCoreIncr, reduces to the

previous forumula

10

An Example From Blue
Waters

• Experiment:
♦ 2 nodes, 1 MPI process per core-

module
♦ Ping-pong test, with k processes on

one node sending to k processes on
an adjacent node

11

Time for PingPong with k
Processes

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

6.00E-03

7.00E-03

0 500000 1000000 1500000 2000000 2500000

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Series11

Series12

Series13

Series14

Series15

Series16

12

Time for PingPong with k
Processes

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00
1 10 100 1000 10000 100000 1000000 10000000

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Series11

Series12

Series13

Series14

Series15

Series16

13

New Model
(Full PingPong Time)

•  s = 3.26 usec
♦ For a single send/receive, use half of

this
• RNIC-NIC = 5.7 GB/sec
• RCoreBase = 2.9 GB/sec
• RCoreIncr = 1GB/sec
• Note that these are rough numbers

for illustration only
♦ Not numerical fit to the data –

“eyeball norm” only

14

Model Time Estimate

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

6.00E-03

7.00E-03

0 500000 1000000 1500000 2000000 2500000

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Series11

Series12

Series13

Series14

Series15

Series16

15

Model Time Estimate

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00
1 10 100 1000 10000 100000 1000000 10000000

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Series11

Series12

Series13

Series14

Series15

16

Notes on Model

•  This model ignores the transition between
eager and rendezvous
♦  Like logGP model, different method for moving large

methods may have different rate
•  Maximum in formula complicates fit

♦  No longer simple linear least squares problem

•  Blue Waters nodes have two chips
♦  The one chip is closer to the NIC than the other

•  Another constraint is maximum memory
bandwidth
♦  Assumed higher than link rates

17

Relative Error in Model

Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

Series10

Series11

Series12

Series13

Series14

Series15

Series16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

6.00E-01-8.00E-01

4.00E-01-6.00E-01

2.00E-01-4.00E-01

0.00E+00-2.00E-01

-2.00E-01-0.00E+00

18

Notes on Relative Error

•  Typically less than 10%
•  Highest error in region

where eager to
rendezvous occurs
♦  As expected

•  Model has no term for
impact on latency (s)
♦  Graph on left shows

time for small messages
vs. number of processes

♦  Suggests similar term
for latency
(max(s0,s1+k*s2))

2.90E-06

3.00E-06

3.10E-06

3.20E-06

3.30E-06

3.40E-06

3.50E-06

3.60E-06

3.70E-06

3.80E-06

3.90E-06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n=4

n=8

n=16

n=32

n=64

n=128

19

Some Notes on Performance
Modeling

•  Form an abstract machine model
♦ This is the “execution model”

•  Give it a simple performance model
♦ Try to minimize the number of parameters –

two is often enough
•  Test your assumptions

♦ Refine your model but keep it simple
•  You can’t predict everything

♦ What is that weird behavior for small
messages and 4-6 processes?!

