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Classic Performance Model 

•  s + rn 
• Model combines overhead and 

network latency (s) and a single 
communication rate 1/r 

• Good fit to machines when it was 
introduced 

• But does it match modern SMP-
based machines? 
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SMP Nodes: One Model 
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Modeling the Communication 

• Each link can support a rate rL of 
data 

• Data is pipelined (Logp model) 
♦ Store and forward analysis is different 

• Overhead is completely parallel 
♦ k processes sending one short 

message each takes the same time as 
one process sending one short 
message 
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Sending One Message From 
Each Process 

• How do we model each process 
sending one message to another 
process on another node? 
♦ Classic “postal” model: 
♦ T = s+r n 
♦ Each process has no impact on the 

time that another process takes 
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A Slightly Better Model 

• Assume that the sustained 
communication rate is limited by 
♦ The maximum rate along any shared 

link 
• The link between NICs 

♦ The aggregate rate along parallel 
links 
• Each of the “links” from an MPI process 

to/from the NIC 
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A Slightly Better Model 

• For k processes sending messages, 
the sustained rate is 
♦ min(RNIC-NIC, kRCORE-NIC) 

• Thus 
♦ T = s + kn/Min(RNIC-NIC, kRCORE-NIC) 

• Note if RNIC-NIC is very large (very 
fast network), this reduces to 
♦ T = s + kn/(kRCORE-NIC) = s + n/RCORE-

NIC 
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Observed Rates for Large 
Messages 
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A Slight Refinement 

• Assume that handling more than 
one communication in the NIC 
requires a little extra overhead 
♦ This is pretty arbitrary but we’ll see it 

sometimes matches the data 
♦ T = s + kn/Min(RNIC-NIC, RCoreBase + 

(k-1)RCoreIncr) 
♦ If RCoreBase = RCoreIncr, reduces to the 

previous forumula 
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An Example From Blue 
Waters 

• Experiment: 
♦ 2 nodes, 1 MPI process per core-

module 
♦ Ping-pong test, with k processes on 

one node sending to k processes on 
an adjacent node 
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Time for PingPong with k 
Processes 
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Time for PingPong with k 
Processes 
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New Model  
(Full PingPong Time)   

•  s = 3.26 usec 
♦ For a single send/receive, use half of 

this 
• RNIC-NIC = 5.7 GB/sec 
• RCoreBase = 2.9 GB/sec 
• RCoreIncr = 1GB/sec 
• Note that these are rough numbers 

for illustration only 
♦ Not numerical fit to the data – 

“eyeball norm” only 
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Model Time Estimate 
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Model Time Estimate 
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Notes on Model 

•  This model ignores the transition between 
eager and rendezvous 
♦  Like logGP model, different method for moving large 

methods may have different rate 
•  Maximum in formula complicates fit 

♦  No longer simple linear least squares problem 

•  Blue Waters nodes have two chips 
♦  The one chip is closer to the NIC than the other 

•  Another constraint is maximum memory 
bandwidth 
♦  Assumed higher than link rates 
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Relative Error in Model 
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Notes on Relative Error 

•  Typically less than 10% 
•  Highest error in region 

where eager to 
rendezvous occurs 
♦  As expected 

•  Model has no term for 
impact on latency (s) 
♦  Graph on left shows 

time for small messages 
vs. number of processes 

♦  Suggests similar term 
for latency 
(max(s0,s1+k*s2)) 
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Some Notes on Performance 
Modeling 

•  Form an abstract machine model 
♦ This is the “execution model” 

•  Give it a simple performance model 
♦ Try to minimize the number of parameters – 

two is often enough 
•  Test your assumptions 

♦ Refine your model but keep it simple 
•  You can’t predict everything 

♦ What is that weird behavior for small 
messages and 4-6 processes?! 


