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Sustained Memory Bandwidth

Measure the rate at which data can be copied from
within a program:
t = mysecond()
a(l) =a(l1) +t
I1$OMP PARALLEL DO - Ignore for now
DO 30j =1,n
c(j) = a@)
30 CONTINUE
t = mysecond() -t
c(n) =c(n) + t
times(1,k) =t
This is the STREAM COPY Benchmark

¢ http://www.cs.virginia.edu/stream/
STREAM contains multiple tests (not just copy), and
contains multicore versions

¢ Extensive historical information available on the web site
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Example Results
(My Laptop in 2008)

Function Rate (MB/s) Avg time Min time Max time
Copy: 2900.3744 0.0115 0.0110 0.0121
Scale: 2752.9018 0.0121 0.0116 0.0137
Add: 3241.4521 0.0156 0.0148 0.0188
Triad: 3265.9560 0.0151 0.0147 0.0165
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Example Results
(My newer Laptop in 2015)

Function Best Rate MB/s Avg time Min time Max time

Copy: 16970.7 0.009641 0.009428 0.010048
Scale: 13321.1 0.012168 0.012011 0.012475
Add: 13147.8 0.018488 0.018254 0.019308
Triad: 13101.7 0.019142 0.018318 0.019389
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Aside on Trends

e Raw numbers for performance
improvement look good

¢ And they are!

e But the ratio is about a factor of 4
In 6 years

¢ A "mere” 26% improvement every
year

¢ Much less than a doubling in
performance every 2 years or less

I
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Sparse Matrix-Vector Product

e Common operation for optimal (in
floating-point operations) solution
of linear systems

e Sample code:

for row=1l,n

m = i[row] - i[row-1];
sum = 0;
for k=1,m

sum += *a++ * x[*J++];
y[row] = sum;

e Data structures are a[nnz], j[nnz],

iln], x[n], y[n]
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Sample Code in Fortran

e Arrays are ia(n+1), ja(nnz), a(nnz), x(n), y(n)
o Offset =0
Do row=1,n
m = ia(row+1) - ia(row)
sum = 0
do k=1,m
sum = sum + a(offset+k) * x(ja(offset+k))
enddo
y(row) = sum
offset = offset + m
enddo

e This is called CSR (Compressed Sparse Row)
format

I
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Question

e Don’t look at the next slide yet.
See if you can estimate the
performance of this operation:

¢ How many floating point operations
are there?

¢ How many load operations?
¢ How many store operations?
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Simple Memory Motion
Analysis

e There are nnz steps in the loop
¢ Each performs 2 floating point operations
¢ Each loads 3 values: A(k), ja(k), x(ja(k))

e We'll assume ja is half the size of A, X, and y
¢ Each stores 1 value: y(row)
¢ Also load n values: ia(row)
¢ We assume “sum” is stored in a register and
IS not written to memory

e Time = nnz(2c + 2.5r) + n(0.5r+w)

e However, this is too pessimistic. We
need a slightly better model
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Simplified Computer
Architecture

e Main memory contains the CPU

program data register | register | register

e Cache memory contains a
copy of the main memory
data

¢ Cache is faster but consumes Cache Memory
more space and power '

¢ Cache items accessed by
their address in main
memory

e Registers contain working |
data onIy Main Memory

¢ Modern CPUs perform most
or all operations only on data
][ In register
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Improved Performance Model

e Assume values are only loaded
once
¢ Because nnz > n, and there are only

n values of X, X is only loaded n
times, not nnz times

e Assumes that after the first time:
- X is in cache
— Cache memory is infinitely fast
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Simple Performance Analysis

e Memory motion - Loads:

¢ nnz (sizeof(double) + sizeof(int)) +
n (sizeof(double) + sizeof(int))

¢ Assume a perfect cache (never load same data
twice)

e Memory motion - Stores:
¢ n (sizeof(double))

e Computation
¢ nnz multiply-add (MA)
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Sparse Matrix-Vector Multiply
Performance Expectations
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e Assume nhz >> n

¢ Then load ja(k) and a(k) (typically 4 + 8 = 12 bytes)
for each multiply and add operation

e Roughly 12 bytes per MA
e Typical workstation node can move 1-4 bytes/

MultiplyAdd
¢ Thus we can estimate a bound on the maximum
possible performance:

¢ 4 bytes moved/12 bytes needed for operation is 33%
of peak

¢ 1 byte move/12 bytes needed for operation is 8% of
peak

e Thus, maximum performance is 8-33% of
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More Performance Analysis

e Instruction Counts:

¢ nnz (2*load-double + load-int + mult-add) +
n (load-int + store-double)

e Roughly 4 instructions per MA

e Maximum performance is 25% of peak (33% if MA overlaps
one load/store)

¢ (wide instruction words can help here)

e Changing matrix data structure (e.g., exploit small block
structure) allows reuse of data in register, eliminating some
loads (x and j)

e Implementation improvements (tricks) cannot improve on
these limits

e Details of the estimate depend on the details of the execution
model (what does the model hardware provide) and the
fidelity of that execution model to the real hardware.
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Realistic Measures of Peak Performance

Sparse Matrix Vector Product
One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120
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Realistic Measures of Peak Performance

Sparse Matrix Vector Product
one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120
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Observations
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e Clock rate based performance analysis
is often not useful

e Models that make use of sustained
memory bandwidth can provide a better
prediction of performance

e Both models provide upper bounds on
performance

¢ In this example, most of the data was
accessed in a regular way

e Good fit to cache design
e Operations are close to STREAM model
e Not always so simple
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Question

e Assume a processor with a 2.8
GHz clock, and able to perform one
floating point operation per clock
cycle
¢ What is the peak performance of the

processor, defined as the maximum

number of floating point operations
per second?
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Question

e Assume that the sustainable memory
bandwidth is 12 Gbytes/second. For a DAXPY
operation, what is the maximum possible
performance, using the same analysis as we
used for the Sparse matrix-vector multiply. A
DAXPY is

e Doi=1,n

y(i) = alpha * x(i) + y(i)
enddo

e What is the ratio of the performance for
DAXPY and the peak performance for the
processor?
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