
Lecture 4: Modeling Sparse
Matrix-Vector Multiply

William Gropp
www.cs.illinois.edu/~wgropp

2

Sustained Memory Bandwidth

•  Measure the rate at which data can be copied from
within a program:
 t = mysecond()
 a(1) = a(1) + t
!$OMP PARALLEL DO
 DO 30 j = 1,n
 c(j) = a(j)
 30 CONTINUE
 t = mysecond() - t
 c(n) = c(n) + t
 times(1,k) = t

•  This is the STREAM COPY Benchmark
♦  http://www.cs.virginia.edu/stream/

•  STREAM contains multiple tests (not just copy), and
contains multicore versions
♦  Extensive historical information available on the web site

Ignore for now

3

Example Results
(My Laptop in 2008)

--
Function Rate (MB/s) Avg time Min time Max time
Copy: 2900.3744 0.0115 0.0110 0.0121
Scale: 2752.9018 0.0121 0.0116 0.0137
Add: 3241.4521 0.0156 0.0148 0.0188
Triad: 3265.9560 0.0151 0.0147 0.0165
 --

4

Example Results
(My newer Laptop in 2015)

Function Best Rate MB/s Avg time Min time Max time
Copy: 16970.7 0.009641 0.009428 0.010048
Scale: 13321.1 0.012168 0.012011 0.012475
Add: 13147.8 0.018488 0.018254 0.019308
Triad: 13101.7 0.019142 0.018318 0.019389

5

Aside on Trends

• Raw numbers for performance
improvement look good
♦ And they are!

• But the ratio is about a factor of 4
in 6 years
♦ A “mere” 26% improvement every

year
♦ Much less than a doubling in

performance every 2 years or less

6

Sparse Matrix-Vector Product

• Common operation for optimal (in
floating-point operations) solution
of linear systems

• Sample code:
for row=1,n
 m = i[row] - i[row-1];
 sum = 0;
 for k=1,m
 sum += *a++ * x[*j++];
 y[row] = sum;

• Data structures are a[nnz], j[nnz],
i[n], x[n], y[n]

7

Sample Code in Fortran

•  Arrays are ia(n+1), ja(nnz), a(nnz), x(n), y(n)
•  Offset = 0

Do row=1,n
 m = ia(row+1) - ia(row)
 sum = 0
 do k=1,m
 sum = sum + a(offset+k) * x(ja(offset+k))
 enddo
 y(row) = sum
 offset = offset + m
enddo

•  This is called CSR (Compressed Sparse Row)
format

8

Question

• Don’t look at the next slide yet.
See if you can estimate the
performance of this operation:
♦ How many floating point operations

are there?
♦ How many load operations?
♦ How many store operations?

9

Simple Memory Motion
Analysis

•  There are nnz steps in the loop
♦ Each performs 2 floating point operations
♦ Each loads 3 values: A(k), ja(k), x(ja(k))

• We’ll assume ja is half the size of A, x, and y

♦ Each stores 1 value: y(row)
♦ Also load n values: ia(row)
♦ We assume “sum” is stored in a register and

is not written to memory
•  Time = nnz(2c + 2.5r) + n(0.5r+w)
•  However, this is too pessimistic. We

need a slightly better model

10

CPU
register register register

Cache Memory

Main Memory

Simplified Computer
Architecture

•  Main memory contains the
program data

•  Cache memory contains a
copy of the main memory
data
♦  Cache is faster but consumes

more space and power
♦  Cache items accessed by

their address in main
memory

•  Registers contain working
data only
♦  Modern CPUs perform most

or all operations only on data
in register

11

Improved Performance Model

• Assume values are only loaded
once
♦ Because nnz > n, and there are only

n values of X, X is only loaded n
times, not nnz times
• Assumes that after the first time:
- X is in cache
- Cache memory is infinitely fast

12

Simple Performance Analysis

•  Memory motion - Loads:
♦  nnz (sizeof(double) + sizeof(int)) +

n (sizeof(double) + sizeof(int))
♦  Assume a perfect cache (never load same data

twice)
•  Memory motion – Stores:

♦  n (sizeof(double))

•  Computation
♦  nnz multiply-add (MA)

13

Sparse Matrix-Vector Multiply
Performance Expectations

•  Assume nnz >> n
♦  Then load ja(k) and a(k) (typically 4 + 8 = 12 bytes)

for each multiply and add operation
•  Roughly 12 bytes per MA
•  Typical workstation node can move 1-4 bytes/

MultiplyAdd
♦  Thus we can estimate a bound on the maximum

possible performance:
♦  4 bytes moved/12 bytes needed for operation is 33%

of peak
♦  1 byte move/12 bytes needed for operation is 8% of

peak
•  Thus, maximum performance is 8-33% of

peak

14

More Performance Analysis

•  Instruction Counts:
♦  nnz (2*load-double + load-int + mult-add) +

n (load-int + store-double)
•  Roughly 4 instructions per MA
•  Maximum performance is 25% of peak (33% if MA overlaps

one load/store)
♦  (wide instruction words can help here)

•  Changing matrix data structure (e.g., exploit small block
structure) allows reuse of data in register, eliminating some
loads (x and j)

•  Implementation improvements (tricks) cannot improve on
these limits

•  Details of the estimate depend on the details of the execution
model (what does the model hardware provide) and the
fidelity of that execution model to the real hardware.

15

Realistic Measures of Peak Performance
Sparse Matrix Vector Product

One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0

1000

2000

3000

4000

5000

6000

Power 4 (1.3 GHz) Pentium 4 Xeon (2.4 GHz)

Theoretical Peak Oper. Issue Peak
Mem BW Peak Observed

Thanks to Dinesh Kaushik;
ORNL and ANL for compute time

16

Realistic Measures of Peak Performance
Sparse Matrix Vector Product

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0

1000

2000

3000

4000

5000

6000

SP Origin T3E Pentium Ultra II Power4 Xeon

Theoretical Peak Oper. Issue Peak
Mem BW Peak Observed

17

Observations

•  Clock rate based performance analysis
is often not useful

•  Models that make use of sustained
memory bandwidth can provide a better
prediction of performance

•  Both models provide upper bounds on
performance
♦  In this example, most of the data was

accessed in a regular way
• Good fit to cache design
• Operations are close to STREAM model
• Not always so simple

18

Question

• Assume a processor with a 2.8
GHz clock, and able to perform one
floating point operation per clock
cycle
♦ What is the peak performance of the

processor, defined as the maximum
number of floating point operations
per second?

19

Question

•  Assume that the sustainable memory
bandwidth is 12 Gbytes/second. For a DAXPY
operation, what is the maximum possible
performance, using the same analysis as we
used for the Sparse matrix-vector multiply. A
DAXPY is

•  Do i=1,n
 y(i) = alpha * x(i) + y(i)
enddo

•  What is the ratio of the performance for
DAXPY and the peak performance for the
processor?

