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Sustained Memory Bandwidth 

•  Measure the rate at which data can be copied from 
within a program: 
          t = mysecond() 
          a(1) = a(1) + t 
!$OMP PARALLEL DO 
          DO 30 j = 1,n 
              c(j) = a(j) 
   30   CONTINUE 
          t = mysecond() - t 
          c(n) = c(n) + t 
          times(1,k) = t 

•  This is the STREAM COPY Benchmark 
♦  http://www.cs.virginia.edu/stream/ 

•  STREAM contains multiple tests (not just copy), and 
contains multicore versions 
♦  Extensive historical information available on the web site 

Ignore for now 
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Example Results  
(My Laptop in 2008) 

---------------------------------------------------- 
Function     Rate (MB/s)  Avg time   Min time  Max time 
Copy:      2900.3744      0.0115      0.0110      0.0121 
Scale:      2752.9018      0.0121      0.0116      0.0137 
Add:        3241.4521      0.0156      0.0148      0.0188 
Triad:      3265.9560      0.0151      0.0147      0.0165 
 ---------------------------------------------------- 
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Example Results 
(My newer Laptop in 2015) 

------------------------------------------------------------- 
Function    Best Rate MB/s  Avg time     Min time     Max time 
Copy:           16970.7     0.009641     0.009428     0.010048 
Scale:          13321.1     0.012168     0.012011     0.012475 
Add:            13147.8     0.018488     0.018254     0.019308 
Triad:          13101.7     0.019142     0.018318     0.019389 
------------------------------------------------------------- 
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Aside on Trends 

• Raw numbers for performance 
improvement look good 
♦ And they are! 

• But the ratio is about a factor of 4 
in 6 years 
♦ A “mere” 26% improvement every 

year 
♦ Much less than a doubling in 

performance every 2 years or less 
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Sparse Matrix-Vector Product 

• Common operation for optimal (in 
floating-point operations) solution 
of linear systems 

• Sample code: 
for row=1,n 
    m   = i[row] - i[row-1]; 
    sum = 0; 
    for k=1,m 
        sum += *a++ * x[*j++]; 
    y[row] = sum; 

• Data structures are a[nnz], j[nnz], 
i[n], x[n], y[n] 
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Sample Code in Fortran 

•  Arrays are ia(n+1), ja(nnz), a(nnz), x(n), y(n) 
•  Offset = 0 

Do row=1,n 
    m = ia(row+1) - ia(row) 
    sum = 0 
    do k=1,m 
        sum = sum + a(offset+k) * x(ja(offset+k)) 
    enddo 
    y(row) = sum 
    offset = offset + m 
enddo 

•  This is called CSR (Compressed Sparse Row) 
format 
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Question 

• Don’t look at the next slide yet.  
See if you can estimate the 
performance of this operation: 
♦ How many floating point operations 

are there? 
♦ How many load operations? 
♦ How many store operations? 
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Simple Memory Motion 
Analysis 

•  There are nnz steps in the loop 
♦ Each performs 2 floating point operations 
♦ Each loads 3 values: A(k), ja(k), x(ja(k)) 

• We’ll assume ja is half the size of A, x, and y 

♦ Each stores 1 value: y(row) 
♦ Also load n values: ia(row) 
♦ We assume “sum” is stored in a register and 

is not written to memory 
•  Time = nnz(2c + 2.5r) + n(0.5r+w) 
•  However, this is too pessimistic.  We 

need a slightly better model  
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CPU 
register register register 

Cache Memory 

Main Memory 

Simplified Computer 
Architecture 

•  Main memory contains the 
program data 

•  Cache memory contains a 
copy of the main memory 
data 
♦  Cache is faster but consumes 

more space and power 
♦  Cache items accessed by 

their address in main 
memory 

•  Registers contain working 
data only 
♦  Modern CPUs perform most 

or all operations only on data 
in register 
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Improved Performance Model 

• Assume values are only loaded 
once 
♦ Because nnz > n, and there are only 

n values of X, X is only loaded n 
times, not nnz times 
• Assumes that after the first time: 
- X is in cache 
- Cache memory is infinitely fast 
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Simple Performance Analysis 

•  Memory motion - Loads: 
♦  nnz (sizeof(double) + sizeof(int)) +  

n (sizeof(double) + sizeof(int))  
♦  Assume a perfect cache (never load same data 

twice) 
•  Memory motion – Stores: 

♦  n (sizeof(double)) 

•  Computation 
♦  nnz multiply-add (MA) 



13 

Sparse Matrix-Vector Multiply 
Performance Expectations 

•  Assume nnz >> n 
♦  Then load ja(k) and a(k) (typically 4 + 8 = 12 bytes) 

for each multiply and add operation 
•  Roughly 12 bytes per MA 
•  Typical workstation node can move 1-4 bytes/

MultiplyAdd 
♦  Thus we can estimate a bound on the maximum 

possible performance: 
♦  4 bytes moved/12 bytes needed for operation is 33% 

of peak 
♦  1 byte move/12 bytes needed for operation is 8% of 

peak 
•  Thus, maximum performance is 8-33% of 

peak 
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More Performance Analysis 

•  Instruction Counts: 
♦  nnz (2*load-double + load-int + mult-add) + 

n (load-int + store-double)  
•  Roughly 4 instructions per MA 
•  Maximum performance is 25% of peak (33% if MA overlaps 

one load/store) 
♦  (wide instruction words can help here) 

•  Changing matrix data structure (e.g., exploit small block 
structure) allows reuse of data in register, eliminating some 
loads (x and j) 

•  Implementation improvements (tricks) cannot improve on 
these limits 

•  Details of the estimate depend on the details of the execution 
model (what does the model hardware provide) and the 
fidelity of that execution model to the real hardware. 
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Realistic Measures of  Peak Performance 
Sparse Matrix Vector Product 

One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120 

0

1000

2000

3000

4000

5000

6000

Power 4 (1.3 GHz) Pentium 4 Xeon (2.4 GHz)

Theoretical Peak Oper. Issue Peak
Mem BW Peak Observed

Thanks to Dinesh Kaushik;  
ORNL and ANL for compute time 
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Realistic Measures of  Peak Performance 
Sparse Matrix Vector Product 

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120 
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Observations 

•  Clock rate based performance analysis 
is often not useful 

•  Models that make use of sustained 
memory bandwidth can provide a better 
prediction of performance 

•  Both models provide upper bounds on 
performance  
♦  In this example, most of the data was 

accessed in a regular way 
• Good fit to cache design 
• Operations are close to STREAM model 
• Not always so simple 
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Question 

• Assume a processor with a 2.8 
GHz clock, and able to perform one 
floating point operation per clock 
cycle 
♦ What is the peak performance of the 

processor, defined as the maximum 
number of floating point operations 
per second? 
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Question 

•  Assume that the sustainable memory 
bandwidth is 12 Gbytes/second.  For a DAXPY 
operation, what is the maximum possible 
performance, using the same analysis as we 
used for the Sparse matrix-vector multiply.  A 
DAXPY is 

•  Do i=1,n 
   y(i) = alpha * x(i) + y(i) 
enddo 

•  What is the ratio of the performance for 
DAXPY and the peak performance for the 
processor? 


