
Lecture 8: The Cache
Oblivious Approach

www.cs.illinois.edu/~wgropp

2

Designing for Memory
Hierarchy

•  Lets start with a simple 3-level memory model:
♦  Registers
♦  Cache
♦  Main Memory

•  The cache is composed of lines of L words; we normally
assume that there are at least L lines (often many
more)

•  If a load or store from the CPU cannot be satisfied from
the cache, a cache miss occurs.

•  When a miss occurs, one line is loaded from memory
into the cache (this line contains (a copy of) the
referenced memory location

•  If the cache was already full, one line is evicted (written
back out to memory if necessary (e.g., a write occurred
to some data in the line)

3

Some Further Assumptions

•  The cache is perfect:
♦ Each line of memory can be placed

anywhere in the cache. This is called a fully
associative cache for reasons we will discuss
later.

♦ When a line is evicted, the cache makes the
perfect choice, choosing the line that will
not be needed for the longest time in the
future.
•  In practice, the policy used is called Least

Recently Used (LRU): the cache line that has not
been used (accessed) for the longest period of
time is selected for eviction.

4

A New Complexity Model

•  In addition to counting computational operations, count
cache misses.
♦  This is one step better than counting loads and stores, as

loads and stores assumes a 2-level memory hierarchy –
registers and main memory.

♦  There are many other parameters that can be important, but
following our strategy, we can use this model as a kind of
bound on performance.

♦  Specifically, we do not weight a cache miss – we will simply
count them. This means that this model cannot be used to
compare algorithms that trade work for cache misses.

♦  We also assume that cache misses are not overlapped with
other operations (we’ll see later that this can be a significant
limitation)

•  However, with all of these restrictions, this is still a better
model than just counting operations

5

Cache Oblivious Algorithms

•  Our new complexity model is
 W(n) + Q(n,L,Z)

where W(n) is the work, Q(n,L,Z) are the number of
cache misses, n is the “problem size”, L is the line size,
and Z is the cache size.

•  The goal is to minimize (or at least reduce) this cost
relative to the simple algorithms that only consider
W(n).

•  Lets simplify further: Are there algorithms that are
independent of L and Z that are good approximations to
optimal solutions according to this complexity model?
♦  Call these cache parameter oblivious algorithms, or cache

oblivious algorithms for short
♦  The obviously aren’t cache oblivious, but they are portable

to any system for which this three-level memory model is
a good approximation.

6

Divide and Conquer

•  Consider the matrix examples: matrix multiply
and transpose. We know that one approach
that improves cache utilization is to subdivide
each loop into blocks. These blocks must be
chosen to fit in the relevant level of cache (in
a model that is optimizing for a particular
machine architecture)

•  What if instead we applied divide and conquer
and stopped at some “good” size?

7

Divide and Conquer:
Transpose

•  By recursively subdividing (and keeping the submatrices
reasonably square by always dividing the long
dimension), we get to a block that will fit in cache,
eliminating most (non-compulsory) cache misses.

•  By picking a reasonably small size (say, 8k words) for
the smallest block (where recursion is terminated), we
should reduce the number of cache misses without an
explicit knowledge of the cache size (other than “bigger
than 16k”)

8

Details of CO Transpose

ldb

lda

nc

nr

9

Details of CO Transpose

ldb

lda

nc

nr

10

The CO Transpose Code

int transpose(double *a, int ndra, int nr, int nc, double *b, int ndrb)
{
 if (nr < 32) {
 transposeBase(a, ndra, nr, nc, b, ndrb);
 }
 else {
 /* subdivide the long side */
 if (nr > nc) {
 transpose(a, ndra, nr/2, nc, b, ndrb);
 transpose(a + nr/2 ,ndra, nr-nr/2, nc, b+(nr/2)*ndrb, ndrb);
 }
 else {
 transpose(a, ndra, nr, nc/2, b, ndrb);
 transpose(a+ndra*(nc/2), ndra, nr, nc-nc/2, b+nc/2, ndrb);
 }
 }
}

11

 Optimality

•  The “cache oblivious” algorithm is
asymptotically optimal (under the performance
measurement of this model) within a factor of
two
♦  No data movement (involving the matrices) occurs

until the minimum block size is reached. At this
point, the “naïve” transpose algorithm may be used,
because both input and output submatrices fit in
cache. The number of misses is the number of
compulsory misses, plus a small number if the blocks
are not exact multiples of the line size

•  And they probably aren’t exact multiples – that’s part
of the point of being cache oblivious

12

Some Results

Size Naïve Cache Oblivious
64 3000 2800
128 1900 3400
256 1900 4300
512 1200 1800
1024 320 1100
2048 180 1100
2049 780 1100
4096 150 980
4097 560 1100

13

More Recent Results

0

1000

2000

3000

4000

5000

6000

7000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Simple Measured

Cache Oblivious Measured

14

Observations

• Cache Oblivious approach provides
more consistent performance with
a relatively simple implementation
♦ Less sensitive to layout than the

naïve implementation
• However, may not preserve full

L1-resident performance

15

Refinements and Issues

•  Recursion, implemented as function
calls, can be relatively expensive (a few
100’s of instructions)
♦ Manual implementation with a stack is

relatively easy but tedious
•  Cache utilization is approximate
•  Performance model assumes that the

cache is fully associative – any data
item may be placed in any location.
More on this later.

16

Some Comparisons

•  From Cache-Oblivious
Algorithms EXTENDED
ABSTRACT Matteo Frigo
Charles E. Leiserson Harald
Prokop Sridhar Ramachandran
(1999)

•  Note cost: 30ns/2Flops, or 67
Mflops

♦  Depending on platform, this is
either good or bad, relative to the
best available code

•  This result shows that cache
oblivious programs can be
faster than the simple, naïve
code, with only a small
increase in complexity

•  They do not compare with the
best available
implementations

17

Cache Oblivious Searching

•  Consider a static set of keys that needs to be
searched repeatedly, and assume that a binary
tree is the preferred approach

•  If the tree is built using memory allocated for
each entry, linked with pointers, then each link
will often cause a cache miss.
♦  For suitably large set of keys, a cacheline is likely to

be ejected before another key on that cacheline is
accessed

♦  Thus, O(log n) cache misses

18

A CO Data Structure
•  A binary tree of height log2n fits in n-1 words.
•  Organize the tree as a collection of subtrees,

each of which is stored in consecutive
locations

•  log2L accesses are in a cache line of L keys, so
the total number of cache misses is roughly
log2n/log2L, where n is the number of keys.

