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Designing for Memory 
Hierarchy 

•  Lets start with a simple 3-level memory model: 
♦  Registers 
♦  Cache 
♦  Main Memory 

•  The cache is composed of lines of L words; we normally 
assume that there are at least L lines (often many 
more) 

•  If a load or store from the CPU cannot be satisfied from 
the cache, a cache miss occurs. 

•  When a miss occurs, one line is loaded from memory 
into the cache (this line contains (a copy of) the 
referenced memory location 

•  If the cache was already full, one line is evicted (written 
back out to memory if necessary (e.g., a write occurred 
to some data in the line) 
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Some Further Assumptions 

•  The cache is perfect: 
♦ Each line of memory can be placed 

anywhere in the cache.  This is called a fully 
associative cache for reasons we will discuss 
later. 

♦ When a line is evicted, the cache makes the 
perfect choice, choosing the line that will 
not be needed for the longest time in the 
future.  
•  In practice, the policy used is called Least 

Recently Used (LRU): the cache line that has not 
been used (accessed) for the longest period of 
time is selected for eviction.   
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A New Complexity Model 

•  In addition to counting computational operations, count 
cache misses. 
♦  This is one step better than counting loads and stores, as 

loads and stores assumes a 2-level memory hierarchy – 
registers and main memory. 

♦  There are many other parameters that can be important, but 
following our strategy, we can use this model as a kind of 
bound on performance. 

♦  Specifically, we do not weight a cache miss – we will simply 
count them.  This means that this model cannot be used to 
compare algorithms that trade work for cache misses. 

♦  We also assume that cache misses are not overlapped with 
other operations (we’ll see later that this can be a significant 
limitation) 

•  However, with all of these restrictions, this is still a better 
model than just counting operations 
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Cache Oblivious Algorithms 

•  Our new complexity model is  
 W(n) + Q(n,L,Z) 

where W(n) is the work, Q(n,L,Z) are the number of 
cache misses, n is the “problem size”, L is the line size, 
and Z is the cache size. 

•  The goal is to minimize (or at least reduce) this cost 
relative to the simple algorithms that only consider 
W(n). 

•  Lets simplify further: Are there algorithms that are 
independent of L and Z that are good approximations to 
optimal solutions according to this complexity model? 
♦  Call these cache parameter oblivious algorithms, or cache 

oblivious algorithms for short 
♦  The obviously aren’t cache oblivious, but they are portable 

to any system for which this three-level memory model is 
a good approximation. 
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Divide and Conquer 

•  Consider the matrix examples: matrix multiply 
and transpose.  We know that one approach 
that improves cache utilization is to subdivide 
each loop into blocks.  These blocks must be 
chosen to fit in the relevant level of cache (in 
a model that is optimizing for a particular 
machine architecture) 

•  What if instead we applied divide and conquer 
and stopped at some “good” size? 
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Divide and Conquer: 
Transpose 

•  By recursively subdividing (and keeping the submatrices 
reasonably square by always dividing the long 
dimension), we get to a block that will fit in cache, 
eliminating most (non-compulsory) cache misses. 

•  By picking a reasonably small size (say, 8k words) for 
the smallest block (where recursion is terminated), we 
should reduce the number of cache misses without an 
explicit knowledge of the cache size (other than “bigger 
than 16k”) 
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Details of CO Transpose 
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Details of CO Transpose 
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The CO Transpose Code 

int transpose( double *a, int ndra, int nr, int nc, double *b, int ndrb ) 
{ 
  if (nr < 32) { 
    transposeBase( a, ndra, nr, nc, b, ndrb ); 
  } 
  else { 
    /* subdivide the long side */ 
    if (nr > nc) { 
      transpose( a, ndra, nr/2, nc, b, ndrb ); 
      transpose( a + nr/2 ,ndra, nr-nr/2, nc, b+(nr/2)*ndrb, ndrb ); 
    }  
  else { 
      transpose( a, ndra, nr, nc/2, b, ndrb ); 
      transpose( a+ndra*(nc/2), ndra, nr, nc-nc/2, b+nc/2, ndrb ); 
    } 
  } 
} 
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 Optimality 

•  The “cache oblivious” algorithm is 
asymptotically optimal (under the performance 
measurement of this model) within a factor of 
two 
♦  No data movement (involving the matrices) occurs 

until the minimum block size is reached.  At this 
point, the “naïve” transpose algorithm may be used, 
because both input and output submatrices fit in 
cache.  The number of misses is the number of 
compulsory misses, plus a small number if the blocks 
are not exact multiples of the line size 

•  And they probably aren’t exact multiples – that’s part 
of the point of being cache oblivious  
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Some Results 

Size Naïve Cache Oblivious 
64 3000 2800 
128 1900 3400 
256 1900 4300 
512 1200 1800 
1024 320 1100 
2048 180 1100 
2049 780 1100 
4096 150 980 
4097 560 1100 
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More Recent Results 
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Observations 

• Cache Oblivious approach provides 
more consistent performance with 
a relatively simple implementation 
♦ Less sensitive to layout than the 

naïve implementation 
• However, may not preserve full 

L1-resident performance 
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Refinements and Issues 

•  Recursion, implemented as function 
calls, can be relatively expensive (a few 
100’s of  instructions) 
♦ Manual implementation with a stack is 

relatively easy but tedious 
•  Cache utilization is approximate 
•  Performance model assumes that the 

cache is fully associative – any data 
item may be placed in any location.  
More on this later. 
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Some Comparisons 

•  From Cache-Oblivious 
Algorithms EXTENDED 
ABSTRACT Matteo Frigo 
Charles E. Leiserson Harald 
Prokop Sridhar Ramachandran 
(1999) 

•  Note cost: 30ns/2Flops, or 67 
Mflops 

♦  Depending on platform, this is 
either good or bad, relative to the 
best available code 

•  This result shows that cache 
oblivious programs can be 
faster than the simple, naïve 
code, with only a small 
increase in complexity 

•  They do not compare with the 
best available 
implementations 
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Cache Oblivious Searching 

•  Consider a static set of keys that needs to be 
searched repeatedly, and assume that a binary 
tree is the preferred approach 

•  If the tree is built using memory allocated for 
each entry, linked with pointers, then each link 
will often cause a cache miss. 
♦  For suitably large set of keys, a cacheline is likely to 

be ejected before another key on that cacheline is 
accessed 

♦  Thus, O(log n) cache misses 
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A CO Data Structure  
•  A binary tree of height log2n fits in n-1 words.  
•  Organize the tree as a collection of subtrees, 

each of which is stored in consecutive 
locations  

•  log2L accesses are in a cache line of L keys, so 
the total number of cache misses is roughly 
log2n/log2L, where n is the number of keys. 


