
Lecture 20: Distributed
Memory Parallelism

William Gropp
www.cs.illinois.edu/~wgropp

2

A Very Short, Very
Introductory Introduction

• We start with a short introduction
to parallel computing “from
scratch” in order to get our
terminology straight.

• You may already know this, but it
will help get us synchronized (a
term from parallel computing).

3

The Starting Point: A Single
Computer

•  A single (“normal”) computer, circa 2000

•  Program: single sequence of instructions
♦  “Usual” programming languages compiled into

instructions understood by CPU
♦  Most programming models, including parallel ones,

assumed this as “the computer”
•  Process: program + address space + program

counter + stack

Memory

CPU

4

A Bunch of Serial Computers

•  Program: Many instances of same sequential
program operating on different data in difference
address spaces

•  Multiple independent processes with same program
•  Examples

♦  High throughput computing
♦  seti@home and folding@home

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

. . .	

5

Multiple CPU’s per Memory
System

•  May use multiple processes with own memory
plus some way of sharing memory and
coordinating access (operating-system-specific)

•  One process may have multiple threads (pc +
stack)’s operating on same address space, guided
by same program
♦  Sequential programming languages with smart compilers
♦  Threads; OpenMP, OpenACC versions of C and Fortran

Memory

CPU CPU CPU

6

Hardware Variations on Multiple
CPU's per Memory System

• SMPs (Symmetric
Multiprocessors)

• Multicore Chips

• Similar
programming
model, but enhances
performance of
multithreaded
programs

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Separate chips
circa 1980-2000

Single chip (all
chips today)

caches

(can be many)

7

Multiple Memory Systems

•  Program: multiple processes, each of which may be multi-
threaded, with separate address space

•  Program needs some way of expressing communication
among processes, so data can move between address spaces

•  Many large-scale machines look like this, leading to more
interest in programming models that combine the shared and
distributed memory approaches to programming.

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU

Memory

CPU CPU CPU Network

8

Multiple Memory Systems

•  Most systems have several chips sharing memory, physically
placed on the same board (or part of a board)

•  We’ll call this a node
•  Beware: Definitions change with time (what we call a core

used to be a processor) and often carry assumptions
♦  Nodes in the near future may not share memory or may not provide

cache-coherent shared memory, even within a single chip

Network

Memory

CPU CPU CPU CPU CPU CPU

Memory

CPU CPU CPU CPU CPU CPU

Memory

CPU CPU CPU CPU CPU CPU

Memory

CPU CPU CPU CPU CPU CPU

Memory

CPU CPU CPU CPU CPU CPU

9

What about that “Network”?

•  The network or interconnect is what
distinguishes a distributed memory parallel
computer

•  Important characteristics of parallel computer
interconnects include:
♦  How are the nodes connected together

•  This is the topology of the network
♦  How are the nodes attached to the network?
♦  What is the performance of the network?

•  One important performance measure is the
bisection bandwidth:
♦  If I cut the network in half, and add up the

bandwidth across all of the cut links, what is the
minimum value across all possible cuts?

10

A Simple Interconnect

•  Each node (vertex in
the graph, shown as
a circle) connected
to nearest neighbors
in x, y direction (but
not diagonal)

•  Data routed from
one node to the
other by traveling
over one or more
links (edges of the
graph)

Node

Link

11

Bisection Bandwidth

•  Try all cuts in
half, take
minimum

•  In this case,
bisection
bandwidth is
3*individual link
bandwidth

Node

Link

12

Mesh and Torus
Interconnects

•  Each compute node is a node
on a mesh or torus

•  May be 1, 2, 3 or more
dimensions

•  Torus simply adds links
connecting ends together
♦  Clever physical layout keeps

these links the same length
•  Note a rectangular subset of

a mesh is a mesh, but a
rectangular subset of a torus
is not necessarily a torus (it’s
a mesh)

13

Mesh and Torus Features

•  Advantages
♦ Constant cost to scale to more nodes
♦ Simple routing algorithms
♦ Relatively easy to reason about

performance
♦ Matches certain problems well

•  Disadvantages
♦ Bisection bandwidth does not scale with size

•  For general communication patterns, network
contention limits performance

14

Question

• How does the bisection bandwidth
of a 2D mesh scale with the
number of nodes? Consider an n x
n mesh (so n2 nodes) and compute
the bisection bandwidth per node
as a function of n and the link
bandwidth L.

15

Overview of Blue Waters���

Cray XE6 Nodes

•  Dual-socket Node
♦  Two AMD Interlagos chips

•  16 core modules, 64 threads
•  313.6 GFs peak performance
•  64 GBs memory

-  102 GB/sec memory
bandwidth

♦  Gemini Interconnect
•  Router chip & network interface
•  Injection Bandwidth (peak)

-  9.6 GB/sec per direction

•  2 links in x, z, direction, only
1 link in y direction	

HT3
HT3

Blue Waters contains
22,640 Cray XE6
compute nodes.

16

Overview of Blue Waters���

Cray XK7 Nodes

•  Dual-socket Node
♦ One AMD Interlagos chip

•  Same as XE6 nodes

♦ One NVIDIA Kepler chip
•  >1 TF peak performance
•  6 GBs GDDR5 memory
-  180 GB/sec bandwidth

♦ Gemini Interconnect
•  Same as XE6 nodes	

HT3

HT3

PCIe Gen2

Blue Waters contains
4,224 Cray XK7
compute nodes.

17

Overview of Blue Waters���

Gemini Interconnect Network
Blue Waters

3D Torus
Size

24 x 24 x 24

InfiniBand

SMW GigE

Login
Servers
Network(s)

Boot Raid
Fibre Channel

Infiniband

Compute Nodes
Cray XE6 Compute
Cray XK7 Accelerator

Service Nodes
Operating System

Boot
System Database

Login Gateways
Network

Login/Network

Lustre File System
LNET Routers

Y

X

Z

Interconnect
Network Lustre

Service Nodes spread
throughout the torus

18

Multilevel Networks

• Network made up of switches with
many ports that are connected to
♦ Compute nodes
♦ Other switches

• Modern switches can handle many
ports simultaneously (> 100)

19

Example Fat Tree Network

From
http://www-sop.inria.fr/members/Fabien.Hermenier/btrpcc/img/
fat_tree.png

20

Features of Multilevel
Networks

• Advantages
♦ Bisection bandwidth can be high;

increase by adding more switches
♦ “Hops” between nodes small

• Disadvantages
♦ Cost grows faster than linear with

number of compute nodes
♦ More complex; harder to reason

about performance

21

Multilevel Networks Part 2

• As you move up in level (away
from the compute nodes) it is
common to need more bandwidth
between the switches
♦ Solution: Use higher bandwidth links,

especially optical links
• Electrical links are cheap, fast over short

distances
• Optical links have enormous bandwidth,

even over long distances, but are
expensive

22

IH Server Node (Drawer) and
Supernode

Specifications:
 8 Quad-chip Modules
 Up to 8 Tflops
 1 TByte of memory
 4 TB/s memory
 8 Hub Chips
 9 TB/sec/Hub

Packaging:
 2U Drawer
 39”w x 72”d
 > 300 lbs.
 Fully water cooled
 (QCMs, Hubs, and
 Memory)

• Power7 QCMs

• Hub Chips

Memory •

Specifications:
 4 IH Server Nodes
 Up to 32 Tflops
 4 TBytes of memory
 16 TB/s
 32 Hub Chips
 36 TB/sec

Memory •

23

Logical View of IBM PERCS
Interconnect

IBM	
Power7	

In
te
gr
at
ed

	 S
w
itc
h	
Ro

ut
er
	

Po
w
er
7	
Co

he
re
nc
y	
Bu

s	 	

In
te
gr
at
ed

	 S
w
itc
h	
Ro

ut
er
	 HFI	

CAU	

HFI	

IBM	
Power7	

IBM	
Power7	

IBM	
Power7	

drawer
Full direct
connectivity

Llocal links
within drawers
(336 GB/s)

24

Logical View of IBM PERCS
Interconnect

IBM	
Power7	

In
te
gr
at
ed

	 S
w
itc
h	
Ro

ut
er
	

Po
w
er
7	
Co

he
re
nc
y	
Bu

s	 	

In
te
gr
at
ed

	 S
w
itc
h	
Ro

ut
er
	 HFI	

CAU	

HFI	

IBM	
Power7	

IBM	
Power7	

IBM	
Power7	

drawer

supernode

Full direct
connectivity
Llocal links
within drawers
(336 GB/s)

Lremote links
between drawers
in supernode
(240 GB/s) 1

.

.

.
24

25

Logical View of IBM PERCS
Interconnect

. .
.

IBM	
Power7	

In
te
gr
at
ed

	 S
w
itc
h	
Ro

ut
er
	

Po
w
er
7	
Co

he
re
nc
y	
Bu

s	 	

In
te
gr
at
ed

	 S
w
itc
h	
Ro

ut
er
	 HFI	

CAU	

HFI	

IBM	
Power7	

IBM	
Power7	

IBM	
Power7	

drawer

supernode
Full direct
connectivity

Llocal links
within drawers
(336 GB/s)

Lremote links
between drawers
in supernode
(240 GB/s) 1

.

.

.
24

D-links
between
supernodes
(320 GB/s)

1
.
.
.

16

1
2

3

N (≤ 512)

26

Two-level (L, D) Direct-connect
Network

Each Supernode = 32 QCMs
(4 Drawers x 8 SMPs/Drawer)

Fully Interconnected with
Llocal and Lremote Links

QCM	 QCM	

QCM	

Q
CM

	
Q
CM

	

Q
CM

	
Q
CM

	

…

Supernode	 Supernode	

Supernode	

Su
pe

rn
od

e	
Su
pe

rn
od

e	

Supernode	
Supernode	

…

Original Blue Waters Plan = 320
Supernodes

(40 BBs x 8 SNs/BB)

Fully Interconnected with D Links Result: Very low
hardware latency
 Very high bandwidth

But complex, nonuniform
network

27

Another Multilevel Network

•  Cray Ares network uses a similar
approach called a dragonfly network
♦ Uses mixed electrical/optical connections
♦ Roughly, a hierarchy of completely

connected networks; no more than 4 hops
for the sizes considered

•  Presentation on Cray XC30
♦ http://www.nersc.gov/assets/Uploads/

NERSC.XC30.overview.pdf
•  Patent for Dragonfly Network

♦ http://www.faqs.org/patents/app/
20100049942

28

Mesh and Torus Revisited

•  We’ve assumed that
the node
communicates with
the mesh through a
vertex in the mesh

•  Instead, the node
could communicate
with the mesh
directly, through the
edges (links) from
the vertex

Node
Node

Node Node Node

Node Node Node

Node Node Node

29

IBM BlueGene Series

•  IBM BlueGene use
mesh

•  Node occupies a
vertex, directly
manages each link
(edge) from that
vertex separately

•  Each link of modest
speed; must drive
them all to get
comparable
bandwidth to other
systems

30

BG/Q Midplane, 512 nodes,
4x4x4x4x2 Torus

31

More Information on BG/Q

• Nice introduction to ANL’s BG/Q,
including details of memory
system

• See esp. slide 18 on network
• http://

extremecomputingtraining.anl.gov/
files/2014/01/20140804-atpesc-
parker-bgq-arch.pdf

32

Why This Focus on the
Interconnect?

• Distributed memory parallel
computers are just regular
computers, nodes programmed
like any other

• Designing for and programming
the distributed memory means
thinking about how data moves
between the compute nodes

33

Performance Model

•  A simple and often adequate performance
model for the time to move data between
“nodes” is
♦  T = latency + length / bandwidth
♦  T = s + r n , r = 1/bandwidth

•  On modern HPC systems, latency is 1-10usec
and bandwidths are 0.1 to 10 GB/sec

•  This model has many limitations but is often
adequate
♦  E.g., does not include the effect of distance or of

contention with other messages
♦  We’ll discuss other models later

34

Questions

• What sort of network does your
system have?

• Read up on the Blue Waters (Cray
Gemini) interconnect

35

Questions

•  Consider a 1-dimensional torus where each link has
bandwidth b. Consider the following cases:
1.  Each node sends n bytes to the node to the immediate

left
2.  Each node sends n bytes to the node k links away to the

left
•  All communication starts at the same time. Ignore

latency. In each of the above cases, how long does it
take the communication to complete, in terms of n and
b?

•  In the second case, what is the effective bandwidth b’
for the communication (e.g., if you wanted to use the
T=s+n/b model, what value of b should you pick as a
function of k)?

