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A Very Short, Very 
Introductory Introduction 

• We start with a short introduction 
to parallel computing “from 
scratch” in order to get our 
terminology straight. 

• You may already know this, but it 
will help get us synchronized (a 
term from parallel computing). 



3 

The Starting Point: A Single 
Computer 

•  A single (“normal”) computer, circa 2000 
 
 
 

•  Program:  single sequence of instructions 
♦  “Usual” programming languages compiled into 

instructions understood by CPU 
♦  Most programming models, including parallel ones, 

assumed this as “the computer” 
•  Process:  program + address space + program 

counter + stack 

Memory 

CPU 
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A Bunch of Serial Computers 

•  Program:  Many instances of same sequential 
program operating on different data in difference 
address spaces 

•  Multiple independent processes with same program 
•  Examples 

♦  High throughput computing 
♦  seti@home and folding@home 

Memory 

CPU 

Memory 

CPU 

Memory 

CPU 

Memory 

CPU 

. . .	
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Multiple CPU’s per Memory 
System 

•  May use multiple processes with own memory 
plus some way of sharing memory and 
coordinating access (operating-system-specific) 

•  One process may have multiple threads (pc + 
stack)’s operating on same address space, guided 
by same program 
♦  Sequential programming languages with smart compilers 
♦  Threads; OpenMP, OpenACC versions of C and Fortran 

Memory 

CPU CPU CPU 
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Hardware Variations on Multiple 
CPU's per Memory System 

• SMPs (Symmetric 
Multiprocessors) 

• Multicore Chips 

• Similar 
programming 
model, but enhances 
performance of 
multithreaded 
programs 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Separate chips 
circa 1980-2000 

Single chip (all 
chips today) 

caches 

(can be many) 
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Multiple Memory Systems 

•  Program: multiple processes, each of which may be multi-
threaded, with separate address space 

•  Program needs some way of expressing communication 
among processes, so data can move between address spaces  

•  Many large-scale machines look like this, leading to more 
interest in programming models that combine the shared and 
distributed memory approaches to programming. 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU 

Memory 

CPU CPU CPU Network 
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Multiple Memory Systems 

•  Most systems have several chips sharing memory, physically 
placed on the same board (or part of a board) 

•  We’ll call this a node 
•  Beware: Definitions change with time (what we call a core 

used to be a processor) and often carry assumptions 
♦  Nodes in the near future may not share memory or may not provide 

cache-coherent shared memory, even within a single chip 

Network 

Memory 

CPU CPU CPU CPU CPU CPU 

Memory 

CPU CPU CPU CPU CPU CPU 

Memory 

CPU CPU CPU CPU CPU CPU 

Memory 

CPU CPU CPU CPU CPU CPU 

Memory 

CPU CPU CPU CPU CPU CPU 
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What about that “Network”? 

•  The network or interconnect is what 
distinguishes a distributed memory parallel 
computer 

•  Important characteristics of parallel computer 
interconnects include: 
♦  How are the nodes connected together 

•  This is the topology of the network 
♦  How are the nodes attached to the network? 
♦  What is the performance of the network? 

•  One important performance measure is the 
bisection bandwidth: 
♦  If I cut the network in half, and add up the 

bandwidth across all of the cut links, what is the 
minimum value across all possible cuts? 
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A Simple Interconnect 

•  Each node (vertex in 
the graph, shown as 
a circle) connected 
to nearest neighbors 
in x, y direction (but 
not diagonal) 

•  Data routed from 
one node to the 
other by traveling 
over one or more 
links (edges of the 
graph) 

Node 

Link 
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Bisection Bandwidth 

•  Try all cuts in 
half, take 
minimum 

•  In this case, 
bisection 
bandwidth is 
3*individual link 
bandwidth 

Node 

Link 
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Mesh and Torus 
Interconnects 

•  Each compute node is a node 
on a mesh or torus 

•  May be 1, 2, 3 or more 
dimensions 

•  Torus simply adds links 
connecting ends together 
♦  Clever physical layout keeps 

these links the same length 
•  Note a rectangular subset of 

a mesh is a mesh, but a 
rectangular subset of a torus 
is not necessarily a torus (it’s 
a mesh) 
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Mesh and Torus Features 

•  Advantages 
♦ Constant cost to scale to more nodes 
♦ Simple routing algorithms 
♦ Relatively easy to reason about 

performance 
♦ Matches certain problems well 

•  Disadvantages 
♦ Bisection bandwidth does not scale with size 

•  For general communication patterns, network 
contention limits performance 
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Question 

• How does the bisection bandwidth 
of a 2D mesh scale with the 
number of nodes?  Consider an n x 
n mesh (so n2 nodes) and compute 
the bisection bandwidth per node 
as a function of n and the link 
bandwidth L. 
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Overview of Blue Waters���

Cray XE6 Nodes 

•  Dual-socket Node 
♦  Two AMD Interlagos chips 

•  16 core modules, 64 threads 
•  313.6 GFs peak performance 
•  64 GBs memory 

-  102 GB/sec memory 
bandwidth 

♦  Gemini Interconnect 
•  Router chip & network interface 
•  Injection Bandwidth (peak) 

-  9.6 GB/sec per direction 

•  2 links in x, z, direction, only 
1 link in y direction	  

HT3 
HT3 

Blue Waters contains 
22,640 Cray XE6 
compute nodes. 
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Overview of Blue Waters���

Cray XK7 Nodes 

•  Dual-socket Node 
♦ One AMD Interlagos chip 

•  Same as XE6 nodes 

♦ One NVIDIA Kepler chip 
•  >1 TF peak performance 
•  6 GBs GDDR5 memory 
-  180 GB/sec bandwidth 

♦ Gemini Interconnect 
•  Same as XE6 nodes	  

HT3 

HT3 

PCIe Gen2 

Blue Waters contains 
4,224 Cray XK7 
compute nodes. 
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Overview of Blue Waters���

Gemini Interconnect Network 
Blue Waters 

3D Torus 
Size 

24 x 24 x 24 

InfiniBand 

SMW GigE 

Login 
Servers 
Network(s) 

Boot Raid 
Fibre Channel 

Infiniband 

Compute Nodes 
Cray XE6 Compute 
Cray XK7 Accelerator 

Service Nodes 
Operating System 

Boot 
System Database 

Login Gateways 
Network 

Login/Network 

Lustre File System 
LNET Routers 

Y 

X 

Z 

Interconnect 
Network Lustre  

Service Nodes spread  
throughout the torus 
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Multilevel Networks 

• Network made up of switches with 
many ports that are connected to 
♦ Compute nodes 
♦ Other switches 

• Modern switches can handle many 
ports simultaneously (> 100) 
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Example Fat Tree Network 

From 
http://www-sop.inria.fr/members/Fabien.Hermenier/btrpcc/img/
fat_tree.png 
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Features of Multilevel 
Networks 

• Advantages 
♦ Bisection bandwidth can be high; 

increase by adding more switches 
♦ “Hops” between nodes small 

• Disadvantages 
♦ Cost grows faster than linear with 

number of compute nodes 
♦ More complex; harder to reason 

about performance 
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Multilevel Networks Part 2 

• As you move up in level (away 
from the compute nodes) it is 
common to need more bandwidth 
between the switches 
♦ Solution: Use higher bandwidth links, 

especially optical links 
• Electrical links are cheap, fast over short 

distances 
• Optical links have enormous bandwidth, 

even over long distances, but are 
expensive 
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IH Server Node (Drawer) and 
Supernode 

Specifications: 
 8 Quad-chip Modules 
  Up to 8 Tflops 
 1 TByte of memory 
  4 TB/s memory 
 8 Hub Chips 
  9 TB/sec/Hub 

Packaging: 
 2U Drawer 
 39”w x 72”d 
 > 300 lbs. 
 Fully water cooled 
 (QCMs, Hubs, and 
 Memory) 

• Power7 QCMs 

• Hub Chips 

Memory • 

Specifications: 
 4 IH Server Nodes 
  Up to 32 Tflops 
  4 TBytes of memory 
   16 TB/s 
 32 Hub Chips 
  36 TB/sec 

Memory • 
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Logical View of IBM PERCS 
Interconnect 
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Logical View of IBM PERCS 
Interconnect 
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Logical View of IBM PERCS 
Interconnect 
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Two-level (L, D) Direct-connect 
Network 

Each Supernode = 32 QCMs 
(4 Drawers x 8 SMPs/Drawer) 

Fully Interconnected with 
Llocal and Lremote Links 
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Another Multilevel Network 

•  Cray Ares network uses a similar 
approach called a dragonfly network 
♦ Uses mixed electrical/optical connections 
♦ Roughly, a hierarchy of completely 

connected networks; no more than 4 hops 
for the sizes considered 

•  Presentation on Cray XC30 
♦ http://www.nersc.gov/assets/Uploads/

NERSC.XC30.overview.pdf 
•  Patent for Dragonfly Network 

♦ http://www.faqs.org/patents/app/
20100049942 
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Mesh and Torus Revisited 

•  We’ve assumed that 
the node 
communicates with 
the mesh through a 
vertex in the mesh 

•  Instead, the node 
could communicate 
with the mesh 
directly, through the 
edges (links) from 
the vertex 

Node 
Node 

Node Node Node 

Node Node Node 

Node Node Node 
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IBM BlueGene Series 

•  IBM BlueGene use 
mesh 

•  Node occupies a 
vertex, directly 
manages each link 
(edge) from that 
vertex separately 

•  Each link of modest 
speed; must drive 
them all to get 
comparable 
bandwidth to other 
systems 
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BG/Q Midplane, 512 nodes, 
4x4x4x4x2 Torus 
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More Information on BG/Q 

• Nice introduction to ANL’s BG/Q, 
including details of memory 
system 

• See esp. slide 18 on network 
• http://

extremecomputingtraining.anl.gov/
files/2014/01/20140804-atpesc-
parker-bgq-arch.pdf  
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Why This Focus on the 
Interconnect? 

• Distributed memory parallel 
computers are just regular 
computers, nodes programmed 
like any other 

• Designing for and programming 
the distributed memory means 
thinking about how data moves 
between the compute nodes 
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Performance Model 

•  A simple and often adequate performance 
model for the time to move data between 
“nodes” is 
♦  T = latency + length / bandwidth 
♦  T = s + r n , r = 1/bandwidth 

•  On modern HPC systems, latency is 1-10usec 
and bandwidths are 0.1 to 10 GB/sec 

•  This model has many limitations but is often 
adequate 
♦  E.g., does not include the effect of distance or of 

contention with other messages 
♦  We’ll discuss other models later 
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Questions 

• What sort of network does your 
system have? 

• Read up on the Blue Waters (Cray 
Gemini) interconnect 
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Questions 

•  Consider a 1-dimensional torus where each link has 
bandwidth b.  Consider the following cases: 
1.  Each node sends n bytes to the node to the immediate 

left 
2.  Each node sends n bytes to the node k links away to the 

left 
•  All communication starts at the same time.  Ignore 

latency. In each of the above cases, how long does it 
take the communication to complete, in terms of n and 
b?   

•  In the second case, what is the effective bandwidth b’ 
for the communication (e.g., if you wanted to use the 
T=s+n/b model, what value of b should you pick as a 
function of k)? 


