
Lecture 23: More on Point-
to-Point Communication

William Gropp
www.cs.illinois.edu/~wgropp

2

Cooperative Operations for
Communication

•  The message-passing approach makes the
exchange of data cooperative.

•  Data is explicitly sent by one process and
received by another.

•  An advantage is that any change in the
receiving process’s memory is made with the
receiver’s explicit participation.

•  Communication and synchronization are
combined.

Process 0 Process
1

Send(data)
Receive(data)

3

One-Sided Operations for
Communication

•  One-sided operations between processes
include remote memory reads and writes

•  Only one process needs to explicitly
participate.

•  An advantage is that communication and
synchronization are decoupled

•  One-sided operations are part of MPI.
Process 0 Process

1 Put(data)
(memory)

(memory)!

Get(data)

4

Buffers

• When you send data, where does it
go? One possibility is:

Process 0 Process 1

User data

Local buffer

the network

User data

Local buffer

5

Avoiding Buffering

•  It is better to avoid copies:

This requires that MPI_Send wait on delivery, or
that MPI_Recv return before transfer is complete,
and we wait later.

Process 0 Process 1

User data

User data

the network

6

Blocking and Non-blocking
Communication

• So far we have been using
blocking communication:
♦ MPI_Recv does not complete until the

buffer is full (available for use).
♦ MPI_Send does not complete until the

buffer is empty (available for use).
• Completion depends on size of

message and amount of system
buffering.

7

•  Send a large message from process 0 to
process 1
♦  If there is insufficient storage at the destination, the

send must wait for the user to provide the memory
space (through a receive)

•  What happens with this code?

Sources of Deadlocks

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

•  This is called “unsafe” because it depends on
the availability of system buffers

8

Solutions to the “safety”
Problem

•  Order the operations more carefully
•  Supply receive buffer at same time as

send (MPI_Sendrecv)
•  Supply own buffer space (MPI_Bsend)
•  Use non-blocking operations

♦ Safe, but
♦ not necessarily asynchronous
♦ not necessarily concurrent
♦ not necessarily faster

9

MPI’s Non-blocking
Operations

•  Non-blocking operations return
(immediately) “request handles” that
can be tested and waited on.
MPI_Request request;

 MPI_Isend(start, count, datatype,
 dest, tag, comm, &request);

 MPI_Irecv(start, count, datatype,
 dest, tag, comm, &request);

 MPI_Wait(&request, &status);

•  One can also test without waiting:
 MPI_Test(&request, &flag, &status);

10

Multiple Completions

•  It is sometimes desirable to wait on multiple
requests:

 MPI_Waitall(count, array_of_requests,
 array_of_statuses);

 MPI_Waitany(count, array_of_requests,
 &index, &status);

 MPI_Waitsome(incount, array_of_requests,
 &outcount, array_of_indices,
 array_of_statuses);

•  There are corresponding versions of test
for each of these.

11

Communication Modes

•  MPI provides multiple modes for sending
messages:
♦  Synchronous mode (MPI_Ssend): the send does not

complete until a matching receive has begun. (Unsafe
programs deadlock.)

♦  Buffered mode (MPI_Bsend): the user supplies a buffer
to the system for its use. (User allocates enough
memory to make an unsafe program safe.

♦  Ready mode (MPI_Rsend): user guarantees that a
matching receive has been posted.

•  Allows access to fast protocols
•  undefined behavior if matching receive not posted

•  Non-blocking versions (MPI_Issend, etc.)
•  MPI_Recv receives messages sent in any mode.

12

Buffered Mode

•  When MPI_Isend is awkward to use (e.g. lots
of small messages), the user can provide a
buffer for the system to store messages that
cannot immediately be sent.
 int bufsize;
char *buf = malloc(bufsize);
MPI_Buffer_attach(buf, bufsize);
...
MPI_Bsend(... same as MPI_Send ...)
...
MPI_Buffer_detach(&buf, &bufsize);

•  MPI_Buffer_detach waits for completion.
•  Performance depends on MPI implementation

and size of message.

13

Buffered Mode

•  When MPI_Isend is awkward to use (e.g. lots
of small messages), the user can provide a
buffer for the system to store messages that
cannot immediately be sent.
 integer bufsize, buf(10000)

call MPI_Buffer_attach(buf, bufsize, ierr)
...
call MPI_Bsend(... same as MPI_Send ...)
...
call MPI_Buffer_detach(buf, bufsize, ierr)

•  MPI_Buffer_detach waits for completion.
•  Performance depends on MPI implementation

and size of message.

14

Computing the Buffersize

• For each message, you need to
provide a buffer big enough for the
data in the message and
MPI_BSEND_OVERHEAD bytes

• Data size for contiguous buffers is
what you expect (e.g., in C, an
array of n floats has size n *
sizeof(float)

15

Test Your Understanding of
Buffered Sends

• What is wrong with this code?
call MPI_Buffer_attach(buf, &
 bufsize+MPI_BSEND_OVERHEAD, ierr)

Do i=1,n
 ...
 call MPI_Bsend(bufsize bytes ...)
 ...
 Enough MPI_Recvs()
enddo
call MPI_Buffer_detach(buf, bufsize, &
 ierr)

16

Buffering is limited

•  Processor 0
i=1
MPI_Bsend
MPI_Recv
i=2
MPI_Bsend

•  i=2 Bsend fails
because first
Bsend has not
been able to
deliver the data

•  Processor 1
i=1
MPI_Bsend
… delay due to
computing,
process
scheduling,...
MPI_Recv

17

Correct Use of MPI_Bsend

•  Fix: Attach and detach buffer in loop
•  Do i=1,n

 call MPI_Buffer_attach(buf, &

 bufsize+MPI_BSEND_OVERHEAD,ierr)
 ...
 call MPI_Bsend(bufsize bytes)
 ...
 Enough MPI_Recvs()
 call MPI_Buffer_detach(buf, bufsize, ierr)
enddo

Buffer detach will wait until messages
have been delivered

18

Other Point-to Point Features

• MPI_Sendrecv
• MPI_Sendrecv_replace
• MPI_Cancel

♦ Useful for multibuffering
• Persistent requests

♦ Useful for repeated communication
patterns

♦ Some systems can exploit to reduce
latency and increase performance

19

MPI_Sendrecv

•  Allows simultaneous send and receive
•  Everything else is general.

♦ Send and receive datatypes (even type
signatures) may be different

♦ Can use Sendrecv with plain Send or Recv
(or Irecv or Ssend_init, …)

♦ More general than “send left”

Process 0

SendRecv(1)

Process 1

SendRecv(0)

20

Using PMPI routines

• PMPI allows selective replacement
of MPI routines at link time (no
need to recompile)

• Some libraries already make
use of PMPI

• Some MPI implementations
have PMPI bugs
♦ PMPI_Wtime() returns 0
♦ PMPI in a separate library that some

installations have not installed

21

MPI Library

User Program

Call MPI_Send

Call MPI_Bcast

MPI_Send

MPI_Bcast

Profiling Interface

Profiling
Library

PMPI_Send

MPI_Send

22

Using the Profiling Interface
From C

static int nsend = 0;

int MPI_Send(const void *start, int count,
MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

{

 nsend++;

 return PMPI_Send(start, count, datatype,
 dest, tag, comm);

}

23

Using the Profiling Interface
from Fortran

Block data
common /mycounters/ nsend
data nsend/0/
end

subroutine MPI_Send(start, count, datatype, dest,&
 tag, comm, ierr)
integer start(*), count, datatype, dest, tag, comm
common /mycounters/ nsend
save /mycounters/
nsend = nsend + 1
call PMPI_Send(start, count, datatype, &
 dest, tag, comm, ierr)
end

24

Test Yourself: Find Unsafe
Uses of MPI_Send

• Assume that you have a debugger
that will tell you where a program
is stopped (most will). How can
you find unsafe uses of MPI_Send
(calls that assume that data will be
buffered) by running the program
without making assumptions about
the amount of buffering
♦ Hint: Use MPI_Ssend

25

Finding Unsafe uses of
MPI_Send

subroutine MPI_Send(start, count, datatype, dest,
 tag, comm, ierr)
integer start(*), count, datatype, dest, tag, comm
call PMPI_Ssend(start, count, datatype,
 dest, tag, comm, ierr)
end

• MPI_Ssend will not complete until the matching receive starts

• MPI_Send can be implemented as MPI_Ssend

•  At some value of count, MPI_Send will act like MPI_Ssend (or fail)

26

Finding Unsafe Uses of
MPI_Send II

• Have the application generate a
message about unsafe uses of
MPI_Send
♦ Hint: use MPI_Issend

27

Reporting on Unsafe
MPI_Send

subroutine MPI_Send(start, count, datatype, dest, tag, comm,&
 ierr)
use mpi
integer start(*), count, datatype, dest, tag, comm
integer request, status(MPI_STATUS_SIZE)
double precision tend, delay
parameter (delay=10.0d0)
logical flag

call PMPI_Issend(start, count, datatype, dest, tag, comm, &
 request, ierr)
flag = .false.
tend = MPI_Wtime()+ delay
Do while (.not. flag .and. t1 .gt. MPI_Wtime())
 call PMPI_Test(request, flag, status, ierr)
Enddo
if (.not. flag) then
 print *, ’MPI_Send appears to be hanging’
 call MPI_Abort(MPI_COMM_WORLD, 1, ierr)
endif
end

28

Discussion

• Write a C version of MPI_Send that
checks for unsafe buffering.
Modify it to permit messages
smaller than sizeThreshold bytes.

• This version busy waits for
completion. Discuss some
strategies for reducing the
overhead. How do those depend
on the system (OS, hardware,
etc.)?

