Simple Least Squares Fits for Communication Times

William Gropp www.cs.illinois.edu/~wgropp

Fitting Data to a Linear Equation

- It is common to measure communication times as a function of message length, getting a table of times like this:

\mathbf{N}	Time
8192	$1.71 \mathrm{E}-05$
16384	$1.92 \mathrm{E}-05$
32768	$2.37 \mathrm{E}-05$
65536	$3.47 \mathrm{E}-05$
131072	$5.38 \mathrm{E}-05$
262144	$9.47 \mathrm{E}-05$

Fitting Data to a Linear Equation

- We'd like to determine s and r so that the formula
$T(n)=s+r n$
"fits" this data. By fit, we mean that the difference between s+rn and $T(n)$ is as small as possible (in some particular sense).

Fitting Data to a Linear Equation

- One common measure is to consider the vector of values n and the corresponding values $T(n)$; these are columns in the table.
Then consider norm(T-(s+rn))
The value of s and r that we seek minimize this norm.

Fitting Data to a Linear Equation

- This is the Linear Least Squares problem
- The general version is:
- Solve A $x=b$, where A is an $n \times m$ matrix, b is an $n \times 1$ vector, and x is an $m \times 1$ vector of the coefficients.
- This (except in special cases) doesn't have a solution, so "solve" means to find x such that norm($A x-b$) is minimized.

Creating the Matrix A and Vector b

- For our case, the coefficents are (s, r). We want each row of the matrix to represent one equation $T(n)=s+r n$. Thus, the equations are

$$
\begin{aligned}
& s+r^{*} n_{1}=T_{1} \\
& s+r * n_{2}=T_{2} \\
& s+r^{*} n_{3}=T_{3}
\end{aligned}
$$

- Thus, the matrix A and Vector b are

Solving for The Parameters

- We now need to "solve" $\mathrm{A} x=\mathrm{b}$. There are several ways to do this, some (much) better than others. For these problems, a good approach is to use a matrix computation program, such as matlab or octave. These implement robust and accurate algorithms for the linear least squares problem. In both Matlab and Octave, the operation $A \backslash b$
will compute the least squares solution to $\mathrm{Ax}=\mathrm{b}$

Example Using Octave

- >> nrndv=[8192

16384
32768
65536
131072
262144];
>> arndv=[ones(6,1),nrndv];
\gg trndv $=[1.40 \mathrm{E}-05$
$1.61 \mathrm{E}-05$
2.08E-05
3.20E-05
5.13E-05
9.19E-05];
>> coefrndv = arndv \backslash trndv
coefrndv $=1.1221 \mathrm{e}-05$
3.0764e-10

