
Lecture 5: More on Cache
Memory

William Gropp
www.cs.illinois.edu/~wgropp

2

CPU
register register register

Cache Memory

Main Memory

Simplified Computer
Architecture

•  Main memory contains the
program data

•  Cache memory contains a
copy of the main memory
data
♦  Cache is faster but consumes

more space and power
♦  In our analysis so far, we

assumed infinitely faster
•  Registers contain working

data only

3

Importance of Memory in
Performance Bounds

•  We have seen:
♦  Loads and stores can be as important as

floating point operations
♦ Simple models that look at just sustained

memory bandwidth (and ignore details of
cache effects) can provide useful bounds on
performance
•  Recall the sparse matrix-multiply example
•  True for problems where the majority of data

accesses are consecutive
♦ Note that this is a bound, a guaranteed-not-

to-exceed value for the performance*
•  * - based on the assumptions of the model

4

CPU
register register register

L3 Cache Memory

Main Memory

Simplified Computer
Architecture II

•  Because of the way cache is
implemented in hardware,
there are tradeoffs between
size (number of bytes or
capacity), speed, and power

•  Main memory contains the
program data

•  Multiple Cache memories
contain a copy of the main
memory data
♦  Cache is faster but

consumes more space and
power

♦  Cache items accessed by
their address in main
memory

♦  L1 cache is the fastest but
has the least capacity

♦  L2, L3 provide intermediate
performance/size tradeoffs

L1 Cache Memory

L2 Cache Memory

5

Memory Locality

•  Typical access times for cache-based
systems

Register 1 cycle Ratio to previous

L1 Cache Few cycles 1-3x

L2 Cache ~ 10 cycles 3-10x

Memory ~ 250 cycles 25x

Remote Memory ~2500-5000
cycles

10-20x

6

Impact of Memory Hierarchy

Data Size (Bytes)
103 104 105 106 107 108

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000 STREAM
performance in MB/s
versus data size

L1

L2

Main

7

Revising the Performance
Model

• Use the relevant sustained
bandwidth
♦ Obtain the STREAM (or equivalent)

value for the slowest level of memory
that will be used

♦ Many problems fit into at least L3
cache

8

Updating the Sparse Matrix
Example

• Original (no cache)
♦ Time = nnz(2c + 2.5r) + n(0.5r+w)

• Add in time to load x from Cache:
♦ Time = nnz(2c + 1.5r + rc) + n(1.5r

+w)
• Where rc is the time to read from

(the appropriate level) of cache
♦ Note that X is read into cache from

memory (the 1 in the n(1.5r) term)

9

More on Cache Operation

• Most communication in a computer
is carried out in chunks – blocks of
bytes of data that move together

•  In the memory hierarchy, data
moves between memory and
cache, and between different
levels of cache, in groups called
lines

10

CPU
register register register

L3 Cache Memory

Main Memory

Simplified Computer
Architecture III

•  Main memory contains the
program data

•  Multiple Cache memories contain
a copy of the main memory data

•  Data is moved between levels of
memory in groups of words called
lines
♦  Lines are typically 64-128 bytes,

or 8-16 double precision words
♦  Even if you don’t use the data, it

is moved and occupies space in
the cache

•  Programming Language
Relevance
♦  This performance feature is not

captured in most programming
languages

L1 Cache Memory

L2 Cache Memory

11

Types of Locality

•  Temporal – reuse same data
♦ This has been our assumption in the sparse

matrix case – data is reused
•  Spatial – (re)use “nearby” data
•  These match the hardware
•  Alpern and Carter suggest a different

breakdown, based on needs of
algorithms:
♦  Local: Data has both Temporal and Spatial
♦ Semilocal: Data has Spatial locality
♦ Nonlocal: Data has neither spatial nor

temporal locality

12

Refining the Bounds

•  Achievable memory bandwidth depends on
small, fast, cache memory
♦  Temporal locality reduces need for sustained

memory bandwidth
•  Data is present in faster memory

♦  Leads to an important rule-of-thumb in performance
modeling

•  Identify dominant terms
•  Architectures are too complex for any other approach
•  Similar to approaches for mathematical modeling

♦  “Does it fit in cache” provides a first model
•  Assume all of cache is available
•  For multiple cache levels, use performance of the

smallest (fastest) cache in which the data fits

13

Impact of Memory Hierarchy:
Measured

Data Size (Bytes)
103 104 105 106 107 108

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000 STREAM performance
in MB/s versus data
size

L1

L2

14

Modeled: Memory Bandwidth vs
Data Size

L1

L2

Main Memory

15

Refining the Bounds:
Spatial Locality

•  Non-consecutive memory accesses
expose more details about the memory
structure
♦ Effective cache size reduces when not all of

the data on the same cache line is used
•  Spatial Locality important to get full use of cache
•  Cache line size helps in refining performance

bounds
-  Reduce effective cache size to same fraction of

cache line used.
-  E.g., if 1 8 byte value used from a 128-byte cache

line, or 1/16 of the line, the effective cache size is
1/16 of the full size.

