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Cache Memory 

Main Memory 

Simplified Computer 
Architecture 

•  Main memory contains the 
program data 

•  Cache memory contains a 
copy of the main memory 
data 
♦  Cache is faster but consumes 

more space and power 
♦  In our analysis so far, we 

assumed infinitely faster 
•  Registers contain working 

data only 
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Importance of Memory in 
Performance Bounds 

•  We have seen: 
♦  Loads and stores can be as important as 

floating point operations 
♦ Simple models that look at just sustained 

memory bandwidth (and ignore details of 
cache effects) can provide useful bounds on 
performance 
•  Recall the sparse matrix-multiply example 
•  True for problems where the majority of data 

accesses are consecutive 
♦ Note that this is a bound, a guaranteed-not-

to-exceed value for the performance* 
•  * - based on the assumptions of the model 
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Main Memory 

Simplified Computer 
Architecture II 

•  Because of the way cache is 
implemented in hardware, 
there are tradeoffs between 
size (number of bytes or 
capacity), speed, and power 

•  Main memory contains the 
program data 

•  Multiple Cache memories 
contain a copy of the main 
memory data 
♦  Cache is faster but 

consumes more space and 
power 

♦  Cache items accessed by 
their address in main 
memory 

♦  L1 cache is the fastest but 
has the least capacity 

♦  L2, L3 provide intermediate 
performance/size tradeoffs 

L1 Cache Memory 

L2 Cache Memory 
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Memory Locality 

•  Typical access times for cache-based 
systems 

Register 1 cycle Ratio to previous 

L1 Cache Few cycles 1-3x 

L2 Cache ~ 10 cycles 3-10x 

Memory ~ 250 cycles 25x 

Remote Memory ~2500-5000 
cycles 

10-20x 
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Impact of Memory Hierarchy 
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Revising the Performance 
Model 

• Use the relevant sustained 
bandwidth 
♦ Obtain the STREAM (or equivalent) 

value for the slowest level of memory 
that will be used 

♦ Many problems fit into at least L3 
cache 
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Updating the Sparse Matrix 
Example 

• Original (no cache) 
♦ Time = nnz(2c + 2.5r) + n(0.5r+w) 

• Add in time to load x from Cache: 
♦ Time = nnz(2c + 1.5r + rc) + n(1.5r

+w) 
• Where rc is the time to read from 

(the appropriate level) of cache 
♦ Note that X is read into cache from 

memory (the 1 in the n(1.5r) term) 
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More on Cache Operation 

• Most communication in a computer 
is carried out in chunks – blocks of 
bytes of data that move together 

•  In the memory hierarchy, data 
moves between memory and 
cache, and between different 
levels of cache, in groups called 
lines 
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CPU 
register register register 

L3 Cache Memory 

Main Memory 

Simplified Computer 
Architecture III 

•  Main memory contains the 
program data 

•  Multiple Cache memories contain 
a copy of the main memory data 

•  Data is moved between levels of 
memory in groups of words called 
lines 
♦  Lines are typically 64-128 bytes, 

or 8-16 double precision words 
♦  Even if you don’t use the data, it 

is moved and occupies space in 
the cache 

•  Programming Language 
Relevance 
♦  This performance feature is not 

captured in most programming 
languages 

L1 Cache Memory 

L2 Cache Memory 
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Types of Locality 

•  Temporal – reuse same data 
♦ This has been our assumption in the sparse 

matrix case – data is reused 
•  Spatial – (re)use “nearby” data 
•  These match the hardware 
•  Alpern and Carter suggest a different 

breakdown, based on needs of 
algorithms: 
♦  Local: Data has both Temporal and Spatial 
♦ Semilocal: Data has Spatial locality 
♦ Nonlocal: Data has neither spatial nor 

temporal locality 
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Refining the Bounds 

•  Achievable memory bandwidth depends on 
small, fast, cache memory 
♦  Temporal locality reduces need for sustained 

memory bandwidth 
•  Data is present in faster memory 

♦  Leads to an important rule-of-thumb in performance 
modeling 

•  Identify dominant terms 
•  Architectures are too complex for any other approach 
•  Similar to approaches for mathematical modeling 

♦  “Does it fit in cache” provides a first model 
•  Assume all of cache is available 
•  For multiple cache levels, use performance of the 

smallest (fastest) cache in which the data fits 
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Impact of Memory Hierarchy: 
Measured 
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Modeled: Memory Bandwidth vs 
Data Size 

L1 

L2 

Main Memory 
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Refining the Bounds:  
Spatial Locality 

•  Non-consecutive memory accesses 
expose more details about the memory 
structure 
♦ Effective cache size reduces when not all of 

the data on the same cache line is used 
•  Spatial Locality important to get full use of cache 
•  Cache line size helps in refining performance 

bounds 
-  Reduce effective cache size to same fraction of 

cache line used. 
-  E.g., if 1 8 byte value used from a 128-byte cache 

line, or 1/16 of the line, the effective cache size is 
1/16 of the full size. 


