
Lecture 10: Processing
Instructions

William Gropp
www.cs.illinois.edu/~wgropp

2

More on the CPU

• There are many details that we’ve
ignored
♦ Can more than one operation take

place at a time?
♦ Does each assignment require a store

into memory?
♦ What about the other operations

(loop counts and tests, array
indexing, etc.)?

• Before answering these, lets revisit
the CPU

3

Basic Processor Architecture

•  A representative
processor architecture

•  Key points:
♦  Multilayered memory

system
♦  Multiple functional units

permit concurrent
actions (e.g., loads and
floating point
operations)

♦  Some operations (e.g.,
address translation)
have hardware assist
(TLB) but may fall back
on software

4

More Details

•  Can more than one operation take place
at a time?
♦ Yes, if they involve different functional units
♦ Here, operations are both arithmetic and

memory load or store
♦ Or if there are multiple units of the same

type, as long as enough units are available
•  Note: Quickest way to add to peak

floating point performance is to add
floating point units

5

More Details (2)

•  Does each assignment require a store
into memory?

•  Consider this code in C:
double sum = 0;
for (i=0;i <n; i++) {
 sum = sum + a[i];
}

•  The value “sum” may be stored in
register, requiring no load or store.
♦ Making use of registers can be crucial in

achieving high performance
♦ Recall the CPU diagram: most operations

take place between operands in register

6

More Details (3):
Traps for the Unwary

•  Consider these two codes in C:
♦  Void sum(double *total, double *a, int n) {

 int I;
 for (I=0; I<n; I++) *total += a[I];
}

and

void sum2(double *total, double *a, int n) {
 double s = *total; int I;
 for (I=0; I<n; I++) s += a[I];
 *total = s;
}

•  Do these codes compute the same result?

7

Perils of Aliasing

• They do not compute the same
value!

• Consider this usage of the routines
♦ Sum(&a[2], a, 3);
♦ In the first case, the routine

computes
• A[2] + A[0] + a[1] + a[2] + a[0] + a[1]
• Why?

♦ In the second case, the routine
computes
• A[0] + a[1] + a[2]

8

Question for Review

•  Stop here and show why
 Sum(&a[2], a, 3)
computes
♦ A[2] + A[0] + a[1] + a[2] + a[0] + a[1]

•  Do this by writing out what happens at
each iteration

•  In Fortran, that would be
call sum(a(3), a, 3)
with a declared as double precision a(3)
♦  Fortran experts will note that this is an

invalid statement in Fortran

9

Aliasing of Data

•  When two variables may describe
overlapping memory regions, they are
said to alias one another
♦ Programming languages with pointers often

permit aliasing (how can they prevent it)
♦ The potential for aliasing can force the

compiler to store a value (or in a different
example, load it) even though the
programmer does not intend to use aliased
data

10

Impact on Compilers

• Most compilers do not generate
code to check at runtime if aliasing
is present – the decision is made
at compile time, and if the
compiler is not certain that aliasing
is not present, it assumes that
aliasing may be present

11

Helping the Compiler

•  Additional information may help the C
compiler:
♦  const – data is “constant”.
♦  restrict – pointer is not aliased to any other

pointer
•  Nonstandard

♦ pragma disjoint – specified pointers refer to
separate (disjoint) memory areas

♦ pragma ivdep – ignore “vector”
dependencies

•  Compiler command line options can
sometimes be used (not recommended)

12

More Details (4)

•  What about the other operations (loop
counts and tests, array indexing, etc.)?
♦ Operations on integers are relatively fast in

modern CPUs
•  Exceptions include integer divide and modulus

♦ Branches (conditional jumps to other parts
of the code, such as at a loop test) are also
relatively expensive
• Many processors predict branches, and an

incorrect prediction can be costly
♦ However, most are still faster than an L2

cache miss

13

Can those Operations be Ignored in
Performance Bounds?

•  Not a priori – you should check
•  To test whether they can be ignored, compute

a bound on them:
♦  Assume simple operations: add, integer multiply,

compare, branch, etc.
♦  Assume one cycle each

•  A very coarse assumption
♦  Assume these can execute concurrently with loads,

stores, and floating point operations
•  Remember the CPU diagram - each functional unit can

run independently
♦  In numerical calculations, it is often the case that the

sustained load/store rate is the limiting step
•  But more computationally intensive calculations with

complex control may be dominated by these “other”
operations

14

Some Rules for Bounding
Performance

•  Most importantly remember: the goal is to create an
effective (but possibly approximate) bound on
performance - not an estimate!
♦  Discussion Question: What’s the difference?

•  Count the number of operations in each functional unit
category:
♦  Loads/Stores
♦  Floating Point (add, subtract, multiply - divides are a

special subcase)
♦  Other operations (integer arithmetic, branches,

comparisons, etc.)
•  For each of these, compute the time they will take
•  The bound on the time is the max of these three

♦  Note: not really a bound because weve ignored any
dependencies between the different operations

♦  You can refine each of these by including more detail
•  Refine load/store by considering cache

