
Lecture 19: OpenMP and
General Synchronization

William Gropp
www.cs.illinois.edu/~wgropp

2

Not Everything is a “do loop”

•  Not all loops are over a simple integer
range
♦  Lists, graphs, queues

•  OpenMP provides several general
techniques to handle the more general
case
♦ Tasks
♦  Fine grain synchronization with locks

•  Note there are other tools with
specialized support for more general
iterative operations

3

Simple List Insert

• Add elements into a list,
maintaining sorted order

• Simple list structure
•  typedef struct _listelm {

 int val;
 struct _listelm *next, *prev;
} listelm;

4

List Structure

• Head (of type listelm) points at
first element of list.

•  I.e., head->next always defined,
but may be NULL

5

Serial Code Part 1

// First, find the insert location
ptr = head->next;
prev = head;
while (ptr && ptr->val < ival) {
 prev = ptr;
 ptr = ptr->next;
}

6

Serial Code Part 2

// Now insert
{
 listelm *newelm =

 (listelm*)malloc(sizeof(listelm));
 newelm->val = ival;
 newelm->next = ptr;
 newelm->prev = prev;
 prev->next = newelm;
 if (ptr)

 ptr->prev = newelm;
}

7

Inserting n Elements

•  It is very hard to parallelize an
individual insert element

• But we could parallelize inserting n
elements:
for (i=0; i<n; i++) {
 // get element value to insert
 ival = …;
 ptr = head->next;
 prev = head;
 … insert code

8

Parallelizing the Loop

• Why can’t we simply do
♦ #pragma omp parallel for

• Think about that and jot down an
answer, then continue to the next
slide

9

Race Condition

• Like the MAXLOC example, there is
a race condition: if two threads try
to insert at the same point, one
insert will get lost (best case) or
the list pointers will become
inconsistent.
♦ Make sure that you can draw an

example of how this can happen with
two threads (do that now).

10

Two Threads Racing to Insert

T0 T1
N0 = new element N1 = new element
prev->next = N0

prev->next = N1
ptr->prev = N1

ptr->prev = N0

•  Both threads find the same prev and ptr; they
race to insert before:

11

What Can Go Wrong

•  Which new element you see depends on
which way you go through the list

prev

N0 N1

ptr

12

The Easy (but Wrong) Fix

• We can attempt to fix this by using
#pragma omp critical for the insert
operation (part 2 from the serial
code):

• #pragma omp critical
{
 listelm *newelm = malloc(…);
 …
}

• Why is this wrong?

13

Race to Insert Still Present

•  One element is lost

prev

N0 N1

ptr

14

What are the Fixes?

•  Critical section the entire list
♦ No parallelism, but multiple threads can

safely insert
♦ May be ok if inserts rare, accesses in a

separate phase (and hence don’t require
critical)

•  Guard only the elements that are being
updated
♦ So threads accessing/updating other

(disjoint) parts of the list can do so
concurrently and safely

♦  For this, we need locks

15

OpenMP Locks

• A thread lock is a form of mutual
exclusion. A lock in OpenMP is an
object (omp_lock_t) that can be
held by at most one thread at a
time. The four operations are:

16

OpenMP Locks

•  omp_init_lock(omp_lock_t *) – initialize
a lock

•  omp_set_lock(omp_lock_t*) – wait until
the lock is available, then set it. No
other thread can set the lock until it is
released

•  omp_unset_lock(omp_lock_t*) – unset
(release) the lock

•  omp_destroy_lock(omp_lock_t*) – The
reverse of omp_init_lock

17

Concurrent List Updates

• Note: Locks are not cheap!
♦ This example is only for illustrating

the use of locks
♦ There are clever (and some even

correct) algorithms that minimize or
even eliminate the use of locks

♦ Use performance estimates to decide
whether you must use more
sophisticated techniques
• You’ll need an estimate of lock cost
• Costs can vary significantly by platform

18

Concurrent List Updates

•  Idea: Lock both list elements – the
one before and the one after the
element to be inserted (for a singly
linked list, need only lock the
previous element)

• First version: Lock each element
pair (prev and prev->next) while
searching through the list.

19

Concurrent List Update

 ptr = head->next;
 prev = head;
 /* Lock the elements that we are considering */
 omp_set_lock(&prev->lock);
 while (ptr) {
 omp_set_lock(&ptr->lock);
 if (ptr->val >= ival) break;
 omp_unset_lock(&prev->lock);
 prev = ptr;
 ptr = ptr->next;
 }
 /* We're guaranteed to hold the locks on the
 elements that we need */

20

Insert the Element

listelm *newelm =
 (listelm*)malloc(sizeof(listelm));

newelm->val = ival;
newelm->next = ptr;
newelm->prev = prev;
newelm->prev->next = newelm;
omp_unset_lock(&prev->lock);
if (ptr) {
 ptr->prev = newelm;
 omp_unset_lock(&ptr->lock);
}

21

Speculation

•  You can sometimes reduce the cost of
an algorithm by speculation:
♦  In this case, find a candidate location, then

acquire locks and check that the location is
still correct
•  If not, simply use the original algorithm to move

to the correct location

•  Performance model
♦ Depends on the number of locks saved and

cost of “failed” speculation

22

Speculation Step

 ptr = head->next;
 prev = head;
 /* Find a candidate location */
 while (ptr && ptr->val < ival) {
 prev = ptr;
 ptr = ptr->next;
 }

23

Lock and Check Location

 /* Lock the elements elements that MAY be correct */
 omp_set_lock(&prev->lock);
 if (ptr) omp_set_lock(&ptr->lock);
 /* Confirm that these are adjacent */
 if (prev->next != ptr) { // Speculation failed
 if (ptr) omp_unset_lock(&ptr->lock);
 ptr = prev->next;
 while (ptr) {
 omp_set_lock(&ptr->lock);
 if (ptr->val >= ival) break;
 omp_unset_lock(&prev->lock);
 prev = ptr;
 ptr = ptr->next;
 }
 } // same insert and unset lock code

24

Task Parallelism in OpenMP

• OpenMP provides ways to create
run statements in separate,
dynamically allocated tasks

• #pragma omp task
 statement

runs statement in a separate
thread.
♦ OpenMP manages the number of

threads created, handles joining them
back together

25

Processing a Linked List

•  “process” is a routine that computes on data
connected with a linked list element

•  #pragma omp parallel
{
#pragma omp single
 {
 for(node* p = head; p; p = p->next) {
#pragma omp task
 process(p); // p is firstprivate by default
 }
 }
}

26

Processing a Linked List

•  “process” is a routine that computes on data
connected with a linked list element

•  #pragma omp parallel
{
#pragma omp single
 {
 for(node* p = head; p; p = p->next) {
#pragma omp task
 process(p); // p is firstprivate by default
 }
 }
}

27

Processing a Linked List

•  “process” is a routine that computes on data
connected with a linked list element

•  #pragma omp parallel
{
#pragma omp single
 {
 for(node* p = head; p; p = p->next) {
#pragma omp task
 process(p); // p is firstprivate by default
 }
 }
}

28

Some Last Comments

•  Shared memory programming, even
with good language support, is hard to
both
♦ Be correct
♦ Perform well

•  Two major questions are
♦  In what order are statements executes
♦  In what order do other threads see changes

to memory performed by other threads?

29

Complications

•  Consistency
♦  When does one thread see the results of an update

to memory made by another thread?
•  Sequential consistency

♦  Execution is as if the execution is some interleaving
of the statements (not the hardware instructions)

♦  Code then executes “the way it looks”

•  Sequential consistency is hard to make fast
♦  Other consistency models trade simplicity for

performance
♦  Release consistency requires separate acquire and

release actions on an object

30

More Complications

•  Writes may be completed in an order that is
different than the were issued. Consider this
code:

Thread 0
A=1;
B=2;
A=0;

Thread 1
B=3;
While (A);
Printf(“%d\n”, B);

What value is printed?
Does it matter if A and B are declared volatile?

If sequential consistency is provided, then the
value printed is known.

31

For Discussion

• What problems do you have that
might need fine grain
synchronization?

• The best solution to
synchronization performance
problems is often to avoid the
problem. How might the large
number of locks be avoided in the
list insert example?

