
Lecture 27a: MPI Datatypes 

William Gropp 
www.cs.illinois.edu/~wgropp 



2 

Halo Exchange and Data 
Copies 

• Simple analysis assume all data 
contiguous 
♦ In fact, for all but 1D decomposition, 

some data is contiguous, other 
strided 

GLastRow 

GFirstRow 

LCols 

LRows 

GFirstCol GLastCol 
Contiguous data 

Strided data 
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Halo Exchange and Data 
Copies 

• Common approach is to copy data 
to/from a temporary buffer 
♦ for (i=0; i<n; i++) temp[i] = a[i*nc]; 

• But the MPI implementation may 
need to copy the data from the 
buffer to special memory for 
sending and receiving 
♦ Depends on many details of the 

implementation and the interconnect 
design 
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Avoiding the Extra Copy 

• MPI provides a way to efficiently 
and concisely define a non-
contiguous pattern in memory 
♦ The MPI implementation may be able 

to avoid one memory copy by using 
this description 

♦ Note: What MPI permits, and what an 
implementation may do is not the 
same as what will happen. 
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MPI Datatypes 

•  The data in a message to sent or received is 
described by a triple (address, count, 
datatype), where 

•  An MPI datatype is recursively defined as: 
♦  predefined, corresponding to a data type from the 

language (e.g., MPI_INT, MPI_DOUBLE_PRECISION) 
♦  a contiguous array of MPI datatypes 
♦  a strided block of datatypes 
♦  an indexed array of blocks of datatypes 
♦  an arbitrary structure of datatypes 

•  There are MPI functions to construct custom 
datatypes, such an array of (int, float) pairs, 
or a row of a matrix stored columnwise. 
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Why Datatypes? 

•  Since all data is labeled by type, an MPI implementation 
can support communication between processes on 
machines with very different memory representations 
and lengths of elementary datatypes (heterogeneous 
communication). 

•  Specifying application-oriented layout of data in 
memory 
♦  can reduce memory-to-memory copies in the 

implementation 
♦  allows the use of special hardware (scatter/gather) when 

available 
•  Specifying application-oriented layout of data on a file 

♦  can reduce system calls and physical disk I/O 
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Non-contiguous Datatypes 

•  Provided to allow MPI implementations 
to avoid copy 

•  MPI implementations handle with varying 
degrees of success 
♦ Strided copies of basic types likely to be best 

Network 
Extra copy 
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Potential Performance 
Advantage in MPI Datatypes 

•  Handling non-contiguous data 
•  Assume must pack/unpack on each end 

♦  cn + (s + r n) + cn = s + (2c + r)n 
•  Can move directly 

♦  s + r’ n 
♦  r’ probably > r but < (2c+r) 

•  MPI implementation must copy data 
anyway (into network buffer or shared 
memory); having the datatype permits 
removing 2 copies 
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MPI Datatypes Have Been 
Available for Years 

•  Test system and software 
♦ System: 2.0 GHz Xeon 

•  1 Gbyte main memory 
•  512 Kbyte L2 cache 
•  1230.77 Mbyte/sec Stream benchmark result 

♦ Tests: MPI_Pack vs. hand coded packing 
• MPICH2 as of May 7, 2003 
• MPICH 1.2.5-1a 
•  LAM 6.5.9 

♦ Unpack results are very similar 
♦ Data from 2003, EuroMPI/PVI: “Fast (and 

Reusable) Datatype Processing,” Ross, 
Miller, Gropp 
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Performance 

•  Struct vector is similar to the struct example 
♦  Convenient way to describe N element vector 

•  Indexed test shows necessity of indexed node processing (though 
we should still do better!) 

•  Clear need for loop reordering in 3D YZ test 
•  Current implementations somewhat better but still somewhat 

limited; see “Micro-Applications for Communication Data Access 
Patterns and MPI Datatypes,” Schneider, Gerstenberger, and 
Hoefler  

Test Manual (MB/sec) MPICH2 (%) MPICH (%) LAM (%) Size (MB) Extent (MB)
Contig 1,156.40 97.2 98.3 86.7 4 4

Struct Array 1,055.00 107.0 107.0 48.6 5.75 5.75
Vector 754.37 99.9 98.7 65.1 4 8

Struct Vector 746.04 100.0 4.9 19.0 4 8
Indexed 654.35 61.3 12.7 18.8 2 4

3D Face, XY 1,807.91 99.5 97.0 63.0 0.25 0.25
3D Face, XZ 1,244.52 99.5 97.3 79.8 0.25 63.75
3D Face, YZ 111.85 100.0 100.0 57.4 0.25 64
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Datatype Abstractions 

• Standard Unix abstraction is “block 
of contiguous bytes” (e.g., readv, 
writev) 

• MPI specifies datatypes recursively 
as 
♦ count of (type,offset) 

where offset may be relative or 
absolute 
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Working With MPI Datatypes 

•  An MPI datatype defines a type signature: 
♦  sequence of pairs: (basic type,offset) 
♦  An integer at offset 0, followed by another integer at 

offset 8, followed by a double at offset 16 is 
•  (integer,0), (integer,4), (double,16)   

♦  Offsets need not be increasing: 
•  (integer,64),(double,0) 

•  An MPI datatype has an extent and a size 
♦  size is the number of bytes of the datatype 
♦  extent controls how a datatype is used with the 

count field in a send and similar MPI operations 
♦  extent is a misleading name 
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What Does Extent Do? 

•  Consider 
MPI_Send( buf, count, datatype, …) 

•  What actually gets sent? 
•  MPI defines this as sending the same data as 

do i=0,count-1 
    MPI_Send(buf(1+i*extent(datatype)),1, 
                      datatype,…) 
 (buf is a byte type like integer*1) 

•  extent is used to decide where to send from 
(or where to receive to in MPI_Recv) for count 
> 1 

•  Normally, this is right after the last byte used 
for (i-1) 
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Changing the Extent 

•  MPI provides the routine 
MPI_Type_create_resized for changing 
the extent and the lower bound of a 
datatype 
♦ This doesn’t change the size, just how MPI 

decides what addresses in memory to use in 
offseting one datatype from another. 

•  Usage: 
MPI_Type_create_resized(oldtype,  

  lowerbound, extent, newtype) 
•  Except in weird cases, lowerbound should be 

zero. 
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Sending Rows of a Matrix 

•  From Fortran, assume you want to send 
a row of the matrix 
    A(n,m), 
that is, A(row,j), for j=1,…, m 

•  A(row,j) is not adjacent in memory to 
A(row,j+1) 

•  One solution: send each element 
separately: 
Do j=1,m 
    Call MPI_Send( A(row,j), 1, MPI_DOUBLE_PRECSION, 
…) 

•  Why not? (Hint: What is the cost?) 
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MPI Type vector 

•  Create a single datatype representing 
elements separated by a constant distance 
(stride) in memory 
♦ m items, separated by a stride of n: 
♦  call MPI_Type_vector( m, 1, n, &  

           MPI_DOUBLE_PRECISION, newtype, & 
   ierr ) 
call MPI_Type_commit( newtype, ierr ) 

♦ Type_commit required before using a type in 
an MPI communication operation.   

•  Then send one instance of this type 
MPI_Send( a(row,1), 1, newtype, ….) 
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Test your understanding of 
Extent 

• How do you send 2 rows of the 
matrix?  Can you do this: 
MPI_Send(a(row,1),2,newtype,…) 

• Hint: Extent(newtype) is distance 
from the first to last byte of the 
type 
♦ Last byte is a(row,m) 

• Hint:  What is the first location of 
A that is sent after the first row? 
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Sending with MPI_Vector 

•  Extent(newtype) is ((m-1)*n+1)*sizeof(double) 
♦  Last element sent is A(row,m) 

•  do i=0,1 
    call MPI_Send(buf(1+i*extent(datatype)),1,& 
                      datatype,…) 
becomes 

•  call MPI_Send(A(row,1:m),…)   (i=0) 
call MPI_Send(A(row+1,m:2m-1),…)  (i=1) 

•  The second step is not  
call MPI_Send(A(row+1,1:m),…) 

•  Note: Do not use A(row,1:m) in MPI programs; 
it is used here as a shorthand for A(row,k) for 
k=1,m 
♦  With the MPI_F08 module, it may be possible to use 

array sections. 
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Solutions for Vectors 

•  MPI_Type_vector is for very specific 
uses 
♦  rarely makes sense to use count other than 

1 with a vector type 
•  To send two rows, simply change the 

blockcount: 
call MPI_Type_vector( m, 2, n, & 
  MPI_DOUBLE_PRECISION, newtype, & 

 ierr ) 
•  Stride is still relative to basic type 
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Sending Vectors of Different 
Sizes 

• How would you send A(i,2:m) and 
A(i+1,3:m) with a single MPI 
datatype? 
♦ Allow “count” to select the number of 

columns, as in 
call MPI_Send(A(i,2),m-1,type,…) 
call MPI_Send(A(i+1,3),m-2,type,…) 

• Hint: Use an extent of n elements 
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Striding Type 

•  Create a type with an extent of a 
column of the array: 
♦  Integer (kind=MPI_ADDRESS_KIND)extent 

extent = n*8 
Call MPI_Type_create_resized(& 
 MPI_DOUBLE_PRECISION, 0, extent, & 
  newtype, ierr) 

•  Then 
 MPI_Send(A(i,2),m-1,newtype,…) 

sends the elements A(i,2:m) 
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Test Your Understanding of 
Datatypes 

•  Write a program that sends rows of a matrix 
from one processor to another.  Use both 
MPI_Type_vector and MPI_Type_create 
resized methods 
♦  Which is most efficient? 
♦  Which is easier to use? 

•  Hard but interesting: Write a program that 
sends a matrix from one processor to another.  
Arrange the datatypes so that the matrix is 
received in transposed order 
♦  A(i,j) on sender arrives in A(j,i) on receiver 
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Realities of MPI Datatypes 

• Performance depends on quality of 
implementation 
♦ Not all patterns well optimized 

• Example: 
♦ Gather for unstructured grid, 4 

elements at each point.  Compare: 
• Manual packing 
• MPI_Type_create_indexed_block 

(contiguous) 
• MPI_Type_create_indexed_block 
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Manual Packing 

•  for(int i = 0; i < slst->xlen; i++) { 
int i0 = bcsr->c * slst->isx[i];      
int i1 = bcsr->c * i; 
for(int j = 0; j < bcsr->c; j++) 
     xsend[ i1 + j ] = x[ i0 + j ]; 
} 
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MPI_Type_create_indexed_block 

•  MPI_Type_contiguous(bcsr->c, 
  MPI_DOUBLE, &type2); 

MPI_Type_commit(&type2); 
int *sdisp = slst->isx + slst->isn[i]; 
int slen = slst->isn[i+1] - slst->isn[i]; 
MPI_Type_create_indexed_block( 

 slen, 1, sdisp, type2, &newtype); 
MPI_Type_commit(&newtype); 

•  Note each block is one instance of a 
contiguous type of 4 doubles 
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MPI_Type_create_indexed_block 
(version 2) 

• MPI_Type_create_indexed_block( 
 slen, 4, sdispb4,  
 MPI_DOUBLE, &newtype); 

MPI_Type_commit(&newtype); 
• Sdisp array scaled by 4 from 

previous slide 
• Note each block is 4 instances of 

one double  
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Notes On Datatypes for 
Gather 

•  Manual packing may force an extra move of 
data 
♦  MPI implementation may need to move data 

internally; the user pack operation is an 
(semantically) unnecessary move 

•  Both versions using 
MPI_Type_create_indexed_block should be 
equivalent 
♦  They are functionally – they describe the same data 

to move 
♦  They are not in performance (depending on the MPI 

implementation) 
♦  On Blue Waters, the 3rd form is the fastest of the 

three; the second is quite slow 
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Questions for Discussion 

• Where might you use datatypes in 
your application? 

• Why does MPI have so many 
different datatype constructors?  
Why not just use the Unix iov? 
♦ Hint: What is a performance model 

for using iovs?  Compare that to an 
MPI vector or block-indexed type. 


