
Lecture 27a: MPI Datatypes

William Gropp
www.cs.illinois.edu/~wgropp

2

Halo Exchange and Data
Copies

• Simple analysis assume all data
contiguous
♦ In fact, for all but 1D decomposition,

some data is contiguous, other
strided

GLastRow

GFirstRow

LCols

LRows

GFirstCol GLastCol
Contiguous data

Strided data

3

Halo Exchange and Data
Copies

• Common approach is to copy data
to/from a temporary buffer
♦ for (i=0; i<n; i++) temp[i] = a[i*nc];

• But the MPI implementation may
need to copy the data from the
buffer to special memory for
sending and receiving
♦ Depends on many details of the

implementation and the interconnect
design

4

Avoiding the Extra Copy

• MPI provides a way to efficiently
and concisely define a non-
contiguous pattern in memory
♦ The MPI implementation may be able

to avoid one memory copy by using
this description

♦ Note: What MPI permits, and what an
implementation may do is not the
same as what will happen.

5

MPI Datatypes

•  The data in a message to sent or received is
described by a triple (address, count,
datatype), where

•  An MPI datatype is recursively defined as:
♦  predefined, corresponding to a data type from the

language (e.g., MPI_INT, MPI_DOUBLE_PRECISION)
♦  a contiguous array of MPI datatypes
♦  a strided block of datatypes
♦  an indexed array of blocks of datatypes
♦  an arbitrary structure of datatypes

•  There are MPI functions to construct custom
datatypes, such an array of (int, float) pairs,
or a row of a matrix stored columnwise.

6

Why Datatypes?

•  Since all data is labeled by type, an MPI implementation
can support communication between processes on
machines with very different memory representations
and lengths of elementary datatypes (heterogeneous
communication).

•  Specifying application-oriented layout of data in
memory
♦  can reduce memory-to-memory copies in the

implementation
♦  allows the use of special hardware (scatter/gather) when

available
•  Specifying application-oriented layout of data on a file

♦  can reduce system calls and physical disk I/O

7

Non-contiguous Datatypes

•  Provided to allow MPI implementations
to avoid copy

•  MPI implementations handle with varying
degrees of success
♦ Strided copies of basic types likely to be best

Network
Extra copy

8

Potential Performance
Advantage in MPI Datatypes

•  Handling non-contiguous data
•  Assume must pack/unpack on each end

♦  cn + (s + r n) + cn = s + (2c + r)n
•  Can move directly

♦  s + r’ n
♦  r’ probably > r but < (2c+r)

•  MPI implementation must copy data
anyway (into network buffer or shared
memory); having the datatype permits
removing 2 copies

9
9

MPI Datatypes Have Been
Available for Years

•  Test system and software
♦ System: 2.0 GHz Xeon

•  1 Gbyte main memory
•  512 Kbyte L2 cache
•  1230.77 Mbyte/sec Stream benchmark result

♦ Tests: MPI_Pack vs. hand coded packing
• MPICH2 as of May 7, 2003
• MPICH 1.2.5-1a
•  LAM 6.5.9

♦ Unpack results are very similar
♦ Data from 2003, EuroMPI/PVI: “Fast (and

Reusable) Datatype Processing,” Ross,
Miller, Gropp

10
10

Performance

•  Struct vector is similar to the struct example
♦  Convenient way to describe N element vector

•  Indexed test shows necessity of indexed node processing (though
we should still do better!)

•  Clear need for loop reordering in 3D YZ test
•  Current implementations somewhat better but still somewhat

limited; see “Micro-Applications for Communication Data Access
Patterns and MPI Datatypes,” Schneider, Gerstenberger, and
Hoefler

Test Manual (MB/sec) MPICH2 (%) MPICH (%) LAM (%) Size (MB) Extent (MB)
Contig 1,156.40 97.2 98.3 86.7 4 4

Struct Array 1,055.00 107.0 107.0 48.6 5.75 5.75
Vector 754.37 99.9 98.7 65.1 4 8

Struct Vector 746.04 100.0 4.9 19.0 4 8
Indexed 654.35 61.3 12.7 18.8 2 4

3D Face, XY 1,807.91 99.5 97.0 63.0 0.25 0.25
3D Face, XZ 1,244.52 99.5 97.3 79.8 0.25 63.75
3D Face, YZ 111.85 100.0 100.0 57.4 0.25 64

11

Datatype Abstractions

• Standard Unix abstraction is “block
of contiguous bytes” (e.g., readv,
writev)

• MPI specifies datatypes recursively
as
♦ count of (type,offset)

where offset may be relative or
absolute

12

Working With MPI Datatypes

•  An MPI datatype defines a type signature:
♦  sequence of pairs: (basic type,offset)
♦  An integer at offset 0, followed by another integer at

offset 8, followed by a double at offset 16 is
•  (integer,0), (integer,4), (double,16)

♦  Offsets need not be increasing:
•  (integer,64),(double,0)

•  An MPI datatype has an extent and a size
♦  size is the number of bytes of the datatype
♦  extent controls how a datatype is used with the

count field in a send and similar MPI operations
♦  extent is a misleading name

13

What Does Extent Do?

•  Consider
MPI_Send(buf, count, datatype, …)

•  What actually gets sent?
•  MPI defines this as sending the same data as

do i=0,count-1
 MPI_Send(buf(1+i*extent(datatype)),1,
 datatype,…)
 (buf is a byte type like integer*1)

•  extent is used to decide where to send from
(or where to receive to in MPI_Recv) for count
> 1

•  Normally, this is right after the last byte used
for (i-1)

14

Changing the Extent

•  MPI provides the routine
MPI_Type_create_resized for changing
the extent and the lower bound of a
datatype
♦ This doesn’t change the size, just how MPI

decides what addresses in memory to use in
offseting one datatype from another.

•  Usage:
MPI_Type_create_resized(oldtype,

 lowerbound, extent, newtype)
•  Except in weird cases, lowerbound should be

zero.

15

Sending Rows of a Matrix

•  From Fortran, assume you want to send
a row of the matrix
 A(n,m),
that is, A(row,j), for j=1,…, m

•  A(row,j) is not adjacent in memory to
A(row,j+1)

•  One solution: send each element
separately:
Do j=1,m
 Call MPI_Send(A(row,j), 1, MPI_DOUBLE_PRECSION,
…)

•  Why not? (Hint: What is the cost?)

16

MPI Type vector

•  Create a single datatype representing
elements separated by a constant distance
(stride) in memory
♦ m items, separated by a stride of n:
♦  call MPI_Type_vector(m, 1, n, &

 MPI_DOUBLE_PRECISION, newtype, &
 ierr)
call MPI_Type_commit(newtype, ierr)

♦ Type_commit required before using a type in
an MPI communication operation.

•  Then send one instance of this type
MPI_Send(a(row,1), 1, newtype, ….)

17

Test your understanding of
Extent

• How do you send 2 rows of the
matrix? Can you do this:
MPI_Send(a(row,1),2,newtype,…)

• Hint: Extent(newtype) is distance
from the first to last byte of the
type
♦ Last byte is a(row,m)

• Hint: What is the first location of
A that is sent after the first row?

18

Sending with MPI_Vector

•  Extent(newtype) is ((m-1)*n+1)*sizeof(double)
♦  Last element sent is A(row,m)

•  do i=0,1
 call MPI_Send(buf(1+i*extent(datatype)),1,&
 datatype,…)
becomes

•  call MPI_Send(A(row,1:m),…) (i=0)
call MPI_Send(A(row+1,m:2m-1),…) (i=1)

•  The second step is not
call MPI_Send(A(row+1,1:m),…)

•  Note: Do not use A(row,1:m) in MPI programs;
it is used here as a shorthand for A(row,k) for
k=1,m
♦  With the MPI_F08 module, it may be possible to use

array sections.

19

Solutions for Vectors

•  MPI_Type_vector is for very specific
uses
♦  rarely makes sense to use count other than

1 with a vector type
•  To send two rows, simply change the

blockcount:
call MPI_Type_vector(m, 2, n, &
 MPI_DOUBLE_PRECISION, newtype, &

 ierr)
•  Stride is still relative to basic type

20

Sending Vectors of Different
Sizes

• How would you send A(i,2:m) and
A(i+1,3:m) with a single MPI
datatype?
♦ Allow “count” to select the number of

columns, as in
call MPI_Send(A(i,2),m-1,type,…)
call MPI_Send(A(i+1,3),m-2,type,…)

• Hint: Use an extent of n elements

21

Striding Type

•  Create a type with an extent of a
column of the array:
♦  Integer (kind=MPI_ADDRESS_KIND)extent

extent = n*8
Call MPI_Type_create_resized(&
 MPI_DOUBLE_PRECISION, 0, extent, &
 newtype, ierr)

•  Then
 MPI_Send(A(i,2),m-1,newtype,…)

sends the elements A(i,2:m)

22

Test Your Understanding of
Datatypes

•  Write a program that sends rows of a matrix
from one processor to another. Use both
MPI_Type_vector and MPI_Type_create
resized methods
♦  Which is most efficient?
♦  Which is easier to use?

•  Hard but interesting: Write a program that
sends a matrix from one processor to another.
Arrange the datatypes so that the matrix is
received in transposed order
♦  A(i,j) on sender arrives in A(j,i) on receiver

23

Realities of MPI Datatypes

• Performance depends on quality of
implementation
♦ Not all patterns well optimized

• Example:
♦ Gather for unstructured grid, 4

elements at each point. Compare:
• Manual packing
• MPI_Type_create_indexed_block

(contiguous)
• MPI_Type_create_indexed_block

24

Manual Packing

•  for(int i = 0; i < slst->xlen; i++) {
int i0 = bcsr->c * slst->isx[i];
int i1 = bcsr->c * i;
for(int j = 0; j < bcsr->c; j++)
 xsend[i1 + j] = x[i0 + j];
}

25

MPI_Type_create_indexed_block

•  MPI_Type_contiguous(bcsr->c,
 MPI_DOUBLE, &type2);

MPI_Type_commit(&type2);
int *sdisp = slst->isx + slst->isn[i];
int slen = slst->isn[i+1] - slst->isn[i];
MPI_Type_create_indexed_block(

 slen, 1, sdisp, type2, &newtype);
MPI_Type_commit(&newtype);

•  Note each block is one instance of a
contiguous type of 4 doubles

26

MPI_Type_create_indexed_block
(version 2)

• MPI_Type_create_indexed_block(
 slen, 4, sdispb4,
 MPI_DOUBLE, &newtype);

MPI_Type_commit(&newtype);
• Sdisp array scaled by 4 from

previous slide
• Note each block is 4 instances of

one double

27

Notes On Datatypes for
Gather

•  Manual packing may force an extra move of
data
♦  MPI implementation may need to move data

internally; the user pack operation is an
(semantically) unnecessary move

•  Both versions using
MPI_Type_create_indexed_block should be
equivalent
♦  They are functionally – they describe the same data

to move
♦  They are not in performance (depending on the MPI

implementation)
♦  On Blue Waters, the 3rd form is the fastest of the

three; the second is quite slow

28

Questions for Discussion

• Where might you use datatypes in
your application?

• Why does MPI have so many
different datatype constructors?
Why not just use the Unix iov?
♦ Hint: What is a performance model

for using iovs? Compare that to an
MPI vector or block-indexed type.

